EconPapers    
Economics at your fingertips  
 

Rethinking Transcriptional Activation in the Arabidopsis Circadian Clock

Karl Fogelmark and Carl Troein

PLOS Computational Biology, 2014, vol. 10, issue 7, 1-12

Abstract: Circadian clocks are biological timekeepers that allow living cells to time their activity in anticipation of predictable daily changes in light and other environmental factors. The complexity of the circadian clock in higher plants makes it difficult to understand the role of individual genes or molecular interactions, and mathematical modelling has been useful in guiding clock research in model organisms such as Arabidopsis thaliana.We present a model of the circadian clock in Arabidopsis, based on a large corpus of published time course data. It appears from experimental evidence in the literature that most interactions in the clock are repressive. Hence, we remove all transcriptional activation found in previous models of this system, and instead extend the system by including two new components, the morning-expressed activator RVE8 and the nightly repressor/activator NOX.Our modelling results demonstrate that the clock does not need a large number of activators in order to reproduce the observed gene expression patterns. For example, the sequential expression of the PRR genes does not require the genes to be connected as a series of activators. In the presented model, transcriptional activation is exclusively the task of RVE8. Predictions of how strongly RVE8 affects its targets are found to agree with earlier interpretations of the experimental data, but generally we find that the many negative feedbacks in the system should discourage intuitive interpretations of mutant phenotypes. The dynamics of the clock are difficult to predict without mathematical modelling, and the clock is better viewed as a tangled web than as a series of loops.Author Summary: Like most living organisms, plants are dependent on sunlight, and evolution has endowed them with an internal clock by which they can predict sunrise and sunset. The clock consists of many genes that control each other in a complex network, leading to daily oscillations in protein levels. The interactions between genes can be positive or negative, causing target genes to be turned on or off. By constructing mathematical models that incorporate our knowledge of this network, we can interpret experimental data by comparing with results from the models. Any discrepancy between experimental data and model predictions will highlight where we are lacking in understanding. We compiled more than 800 sets of measured data from published articles about the clock in the model organism thale cress (Arabidopsis thaliana). Using these data, we constructed a mathematical model which compares favourably with previous models for simulating the clock. We used our model to investigate the role of positive interactions between genes, whether they are necessary for the function of the clock and if they can be identified in the model.

Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003705 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 03705&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1003705

DOI: 10.1371/journal.pcbi.1003705

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-22
Handle: RePEc:plo:pcbi00:1003705