Determining Individual Variation in Growth and Its Implication for Life-History and Population Processes Using the Empirical Bayes Method
Simone Vincenzi,
Marc Mangel,
Alain J Crivelli,
Stephan Munch and
Hans J Skaug
PLOS Computational Biology, 2014, vol. 10, issue 9, 1-16
Abstract:
The differences in demographic and life-history processes between organisms living in the same population have important consequences for ecological and evolutionary dynamics. Modern statistical and computational methods allow the investigation of individual and shared (among homogeneous groups) determinants of the observed variation in growth. We use an Empirical Bayes approach to estimate individual and shared variation in somatic growth using a von Bertalanffy growth model with random effects. To illustrate the power and generality of the method, we consider two populations of marble trout Salmo marmoratus living in Slovenian streams, where individually tagged fish have been sampled for more than 15 years. We use year-of-birth cohort, population density during the first year of life, and individual random effects as potential predictors of the von Bertalanffy growth function's parameters k (rate of growth) and (asymptotic size). Our results showed that size ranks were largely maintained throughout marble trout lifetime in both populations. According to the Akaike Information Criterion (AIC), the best models showed different growth patterns for year-of-birth cohorts as well as the existence of substantial individual variation in growth trajectories after accounting for the cohort effect. For both populations, models including density during the first year of life showed that growth tended to decrease with increasing population density early in life. Model validation showed that predictions of individual growth trajectories using the random-effects model were more accurate than predictions based on mean size-at-age of fish.Author Summary: Somatic growth is a crucial determinant of ecological and evolutionary dynamics, since larger organisms often have higher survival and reproductive success. Size may be the result of intrinsic (i.e. genetic), environmental (temperature, food), and social (competition with conspecifics) factors and interaction between them. Knowing the contribution of intrinsic, environmental, and social factors will improve our understanding of individual population dynamics, help conservation and management of endangered species, and increase our ability to predict future growth trajectories of individuals and populations. The latter goal is also relevant for humans, since predicting future growth of newborns may help identify early pathologies that occur later in life. However, teasing apart the contribution of individual and environmental factors requires powerful and efficient statistical methods, as well as biological insights and the use of longitudinal data. We developed a novel statistical approach to estimate and separate the contribution of intrinsic and environmental factors to lifetime growth trajectories, and generate hypotheses concerning the life-history strategies of organisms. Using two fish populations as a case study, we show that our method predicts future growth of organisms with substantially greater accuracy than using historical information on growth at the population level, and help us identify year-class effects, probably associated with climatic vagaries, as the most important environmental determinant of growth.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003828 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 03828&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1003828
DOI: 10.1371/journal.pcbi.1003828
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().