EconPapers    
Economics at your fingertips  
 

Vesicular Stomatitis Virus Polymerase's Strong Affinity to Its Template Suggests Exotic Transcription Models

Xiaolin Tang, Mourad Bendjennat and Saveez Saffarian

PLOS Computational Biology, 2014, vol. 10, issue 12, 1-10

Abstract: Vesicular stomatitis virus (VSV) is the prototype for negative sense non segmented (NNS) RNA viruses which include potent human and animal pathogens such as Rabies, Ebola and measles. The polymerases of NNS RNA viruses only initiate transcription at or near the 3′ end of their genome template. We measured the dissociation constant of VSV polymerases from their whole genome template to be 20 pM. Given this low dissociation constant, initiation and sustainability of transcription becomes nontrivial. To explore possible mechanisms, we simulated the first hour of transcription using Monte Carlo methods and show that a one-time initial dissociation of all polymerases during entry is not sufficient to sustain transcription. We further show that efficient transcription requires a sliding mechanism for non-transcribing polymerases and can be realized with different polymerase-polymerase interactions and distinct template topologies. In conclusion, we highlight a model in which collisions between transcribing and sliding non-transcribing polymerases result in release of the non-transcribing polymerases allowing for redistribution of polymerases between separate templates during transcription and suggest specific experiments to further test these mechanisms.Author Summary: RNA dependent RNA Polymerases tight association with their template creates an almost infinite dilution transcription machinery. Polymerases are delivered to the host cytoplasm associated with the genome template, however, they initiate transcription only at or near the 3′ end of the genome template. How these polymerases initiate and sustain transcription is completely unknown. Given the efficiency of these polymerases and their nontrivial template interactions, understanding their mechanism has both medical and nano-technological applications. Here we show that efficient transcription requires a sliding mechanism for non-transcribing polymerases and can be realized with different polymerase-polymerase interactions.

Date: 2014
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004004 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 04004&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1004004

DOI: 10.1371/journal.pcbi.1004004

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pcbi00:1004004