Heterogeneous CD8+ T Cell Migration in the Lymph Node in the Absence of Inflammation Revealed by Quantitative Migration Analysis
Edward J Banigan,
Tajie H Harris,
David A Christian,
Christopher A Hunter and
Andrea J Liu
PLOS Computational Biology, 2015, vol. 11, issue 2, 1-20
Abstract:
The three-dimensional positions of immune cells can be tracked in live tissues precisely as a function of time using two-photon microscopy. However, standard methods of analysis used in the field and experimental artifacts can bias interpretations and obscure important aspects of cell migration such as directional migration and non-Brownian walk statistics. Therefore, methods were developed for minimizing drift artifacts, identifying directional and anisotropic (asymmetric) migration, and classifying cell migration statistics. These methods were applied to describe the migration statistics of CD8+ T cells in uninflamed lymph nodes. Contrary to current models, CD8+ T cell statistics are not well described by a straightforward persistent random walk model. Instead, a model in which one population of cells moves via Brownian-like motion and another population follows variable persistent random walks with noise reproduces multiple statistical measures of CD8+ T cell migration in the lymph node in the absence of inflammation.Author Summary: Migration is fundamental to immune cell function, and accurate quantitative methods are crucial for analyzing and interpreting migration statistics. However, existing methods of analysis cannot uniquely describe cell behavior and suffer from various limitations. This complicates efforts to address questions such as to what extent chemotactic signals direct cellular behaviors and how random migration of many cells leads to coordinated immune response. We therefore develop methods that provide a complete description of migration with a minimum of assumptions and describe specific quantities for characterizing directional motion. Using numerical simulations and experimental data, we evaluate these measures and discuss methods to minimize the effects of experimental artifacts. These methodologies may be applied to various migrating cells or organisms. We apply our approach to an important model system, T cells migrating in lymph node. Surprisingly, we find that the canonical Brownian-walker-like model does not accurately describe migration. Instead, we find that T cells move heterogeneously and are described by a two-population model of persistent and diffusive random walkers. This model is completely different from the generalized Lévy walk model that describes activated T cells in brains infected with Toxoplasma gondii, indicating that T cells exhibit distinct migration statistics in different tissues.
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004058 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 04058&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1004058
DOI: 10.1371/journal.pcbi.1004058
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().