Explaining the Timing of Natural Scene Understanding with a Computational Model of Perceptual Categorization
Imri Sofer,
Sébastien M Crouzet and
Thomas Serre
PLOS Computational Biology, 2015, vol. 11, issue 9, 1-20
Abstract:
Observers can rapidly perform a variety of visual tasks such as categorizing a scene as open, as outdoor, or as a beach. Although we know that different tasks are typically associated with systematic differences in behavioral responses, to date, little is known about the underlying mechanisms. Here, we implemented a single integrated paradigm that links perceptual processes with categorization processes. Using a large image database of natural scenes, we trained machine-learning classifiers to derive quantitative measures of task-specific perceptual discriminability based on the distance between individual images and different categorization boundaries. We showed that the resulting discriminability measure accurately predicts variations in behavioral responses across categorization tasks and stimulus sets. We further used the model to design an experiment, which challenged previous interpretations of the so-called “superordinate advantage.” Overall, our study suggests that observed differences in behavioral responses across rapid categorization tasks reflect natural variations in perceptual discriminability.Author Summary: The speed of sight has fascinated scientists and philosophers for centuries. In the blink of an eye, observers can rapidly and effortlessly perform a variety of categorization tasks such as categorizing a scene as open, as natural, or as a beach. The past decade of work has shown that there exist systematic differences in behavioral responses across different categorization tasks: For instance, participants appear to be faster and more accurate at categorizing a scene as outdoor (i.e., superordinate level) compared to categorizing a scene as a beach (i.e., basic level). Here, we describe a computational model combined with human psychophysics experiments, which help shed light on the underlying mechanisms. Using a large natural scene database, we trained machine learning algorithms for different categorization tasks and showed that it is possible to derive confidence measures that accurately predict variations in participants’ behavioral responses across categorization tasks and stimulus sets. Using the computational model to sample stimuli for a human experiment, we demonstrated that it is possible to reverse the superordinate advantage, rendering human observers superordinate categorization slower and less accurate than basic categorization—effectively challenging previous interpretations of the phenomenon. The study further offers a vivid example on how computational models can help summarize and organize existing experimental data as well as plan and interpret new experiments.
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004456 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 04456&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1004456
DOI: 10.1371/journal.pcbi.1004456
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().