Neural Sequence Generation Using Spatiotemporal Patterns of Inhibition
Jonathan Cannon,
Nancy Kopell,
Timothy Gardner and
Jeffrey Markowitz
PLOS Computational Biology, 2015, vol. 11, issue 11, 1-22
Abstract:
Stereotyped sequences of neural activity are thought to underlie reproducible behaviors and cognitive processes ranging from memory recall to arm movement. One of the most prominent theoretical models of neural sequence generation is the synfire chain, in which pulses of synchronized spiking activity propagate robustly along a chain of cells connected by highly redundant feedforward excitation. But recent experimental observations in the avian song production pathway during song generation have shown excitatory activity interacting strongly with the firing patterns of inhibitory neurons, suggesting a process of sequence generation more complex than feedforward excitation. Here we propose a model of sequence generation inspired by these observations in which a pulse travels along a spatially recurrent excitatory chain, passing repeatedly through zones of local feedback inhibition. In this model, synchrony and robust timing are maintained not through redundant excitatory connections, but rather through the interaction between the pulse and the spatiotemporal pattern of inhibition that it creates as it circulates the network. These results suggest that spatially and temporally structured inhibition may play a key role in sequence generation.Author Summary: Sequences of stereotyped actions are central to the everyday lives of humans and animals. It was hypothesized over half a century ago that these behaviors were enabled by linking together groups of neurons (or “cell assemblies”) into a feedforward chain using correlation-based learning rules. These chains could then be activated to generate particular behavioral sequences. However, recent data from HVC (the songbird analogue of premotor cortex) paint a more complicated picture: inhibitory and excitatory cells lock to different phases of a rhythm, with inhibitory cells providing windows of opportunity for the excitatory cells to fire. This study puts forward a mathematical model that uses both a feedforward chain geometry and local feedback inhibition to generate stereotyped neural sequences. The chain conducts an excitatory pulse through multiple spatial regions, arriving at each as local inhibition dips. Our simulations and analysis demonstrate that such patterned local inhibition can synchronize the firing of pools of neurons and stabilize spike timing along the chain. Our model provides a new way of thinking about sequence generation in the songbird and in neural circuits more generally.
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004581 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 04581&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1004581
DOI: 10.1371/journal.pcbi.1004581
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().