Ensemble Tractography
Hiromasa Takemura,
Cesar F Caiafa,
Brian A Wandell and
Franco Pestilli
PLOS Computational Biology, 2016, vol. 12, issue 2, 1-22
Abstract:
Tractography uses diffusion MRI to estimate the trajectory and cortical projection zones of white matter fascicles in the living human brain. There are many different tractography algorithms and each requires the user to set several parameters, such as curvature threshold. Choosing a single algorithm with specific parameters poses two challenges. First, different algorithms and parameter values produce different results. Second, the optimal choice of algorithm and parameter value may differ between different white matter regions or different fascicles, subjects, and acquisition parameters. We propose using ensemble methods to reduce algorithm and parameter dependencies. To do so we separate the processes of fascicle generation and evaluation. Specifically, we analyze the value of creating optimized connectomes by systematically combining candidate streamlines from an ensemble of algorithms (deterministic and probabilistic) and systematically varying parameters (curvature and stopping criterion). The ensemble approach leads to optimized connectomes that provide better cross-validated prediction error of the diffusion MRI data than optimized connectomes generated using a single-algorithm or parameter set. Furthermore, the ensemble approach produces connectomes that contain both short- and long-range fascicles, whereas single-parameter connectomes are biased towards one or the other. In summary, a systematic ensemble tractography approach can produce connectomes that are superior to standard single parameter estimates both for predicting the diffusion measurements and estimating white matter fascicles.Author Summary: Diffusion MRI and tractography opened a new avenue for studying white matter fascicles and their tissue properties in the living human brain. There are many different tractography methods, and each requires the user to set several parameters. A limitation of tractography is that the results depend on the selection of algorithms and parameters. Here, we analyze an ensemble method, Ensemble Tractography (ET), that reduces the effect of algorithm and parameter selection. ET creates a large set of candidate streamlines using an ensemble of algorithms and parameter values and then selects the streamlines with strong support from the data using a global fascicle evaluation method. Compared to single parameter connectomes, ET connectomes predict diffusion MRI signals better and cover a wider range of white matter volume. Importantly, ET connectomes include both short- and long-association fascicles, which are not typically found together in single-parameter connectomes.
Date: 2016
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004692 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 04692&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1004692
DOI: 10.1371/journal.pcbi.1004692
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().