EconPapers    
Economics at your fingertips  
 

Mechanistic Mathematical Modeling Tests Hypotheses of the Neurovascular Coupling in fMRI

Karin Lundengård, Gunnar Cedersund, Sebastian Sten, Felix Leong, Alexander Smedberg, Fredrik Elinder and Maria Engström

PLOS Computational Biology, 2016, vol. 12, issue 6, 1-28

Abstract: Functional magnetic resonance imaging (fMRI) measures brain activity by detecting the blood-oxygen-level dependent (BOLD) response to neural activity. The BOLD response depends on the neurovascular coupling, which connects cerebral blood flow, cerebral blood volume, and deoxyhemoglobin level to neuronal activity. The exact mechanisms behind this neurovascular coupling are not yet fully investigated. There are at least three different ways in which these mechanisms are being discussed. Firstly, mathematical models involving the so-called Balloon model describes the relation between oxygen metabolism, cerebral blood volume, and cerebral blood flow. However, the Balloon model does not describe cellular and biochemical mechanisms. Secondly, the metabolic feedback hypothesis, which is based on experimental findings on metabolism associated with brain activation, and thirdly, the neurotransmitter feed-forward hypothesis which describes intracellular pathways leading to vasoactive substance release. Both the metabolic feedback and the neurotransmitter feed-forward hypotheses have been extensively studied, but only experimentally. These two hypotheses have never been implemented as mathematical models. Here we investigate these two hypotheses by mechanistic mathematical modeling using a systems biology approach; these methods have been used in biological research for many years but never been applied to the BOLD response in fMRI. In the current work, model structures describing the metabolic feedback and the neurotransmitter feed-forward hypotheses were applied to measured BOLD responses in the visual cortex of 12 healthy volunteers. Evaluating each hypothesis separately shows that neither hypothesis alone can describe the data in a biologically plausible way. However, by adding metabolism to the neurotransmitter feed-forward model structure, we obtained a new model structure which is able to fit the estimation data and successfully predict new, independent validation data. These results open the door to a new type of fMRI analysis that more accurately reflects the true neuronal activity.Author Summary: Functional magnetic resonance imaging (fMRI) is a widely used technique for measuring brain activity. However, the signal registered by fMRI is not a direct measurement of the neuronal activity in the brain, but it is influenced by the interplay between the metabolism, blood flow and blood volume in the active area. This signal is called the blood-oxygen-level dependent (BOLD) response and occurs when the blood supply to the active area increases in response to neuronal activity. The mechanisms that the cells use to influence the blood supply are not fully known, and therefore it is difficult to know the true neuronal signalling only from inspection of the fMRI signal. In this article, we present a new mathematical model built on the physiological mechanisms thought to underlie the BOLD response. We could successfully fit the model to data and predict the activity caused by new stimuli. By using the validated model we investigated physiological mechanisms that cause different parts of the BOLD response.

Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004971 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 04971&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1004971

DOI: 10.1371/journal.pcbi.1004971

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-22
Handle: RePEc:plo:pcbi00:1004971