Flow-Based Network Analysis of the Caenorhabditis elegans Connectome
Karol A Bacik,
Michael T Schaub,
Mariano Beguerisse-Díaz,
Yazan N Billeh and
Mauricio Barahona
PLOS Computational Biology, 2016, vol. 12, issue 8, 1-27
Abstract:
We exploit flow propagation on the directed neuronal network of the nematode C. elegans to reveal dynamically relevant features of its connectome. We find flow-based groupings of neurons at different levels of granularity, which we relate to functional and anatomical constituents of its nervous system. A systematic in silico evaluation of the full set of single and double neuron ablations is used to identify deletions that induce the most severe disruptions of the multi-resolution flow structure. Such ablations are linked to functionally relevant neurons, and suggest potential candidates for further in vivo investigation. In addition, we use the directional patterns of incoming and outgoing network flows at all scales to identify flow profiles for the neurons in the connectome, without pre-imposing a priori categories. The four flow roles identified are linked to signal propagation motivated by biological input-response scenarios.Author Summary: One of the goals of systems neuroscience is to elucidate the relationship between the structure of neuronal networks and the functional dynamics that they implement. An ideal model organism to study such interactions is the roundworm C. elegans, which not only has a fully mapped connectome, but has also been the object of extensive behavioural, genetic and neurophysiological experiments. Here we present an analysis of the neuronal network of C. elegans from a dynamical flow perspective. Our analysis reveals a multi-scale organisation of the signal flow in the network linked to anatomical and functional features of neurons, as well as identifying different neuronal roles in relation to signal propagation. We use our computational framework to explore biological input-response scenarios as well as exhaustive in silico ablations, which we relate to experimental findings reported in the literature.
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005055 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 05055&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1005055
DOI: 10.1371/journal.pcbi.1005055
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().