Novel non-invasive algorithm to identify the origins of re-entry and ectopic foci in the atria from 64-lead ECGs: A computational study
Erick A Perez Alday,
Michael A Colman,
Philip Langley and
Henggui Zhang
PLOS Computational Biology, 2017, vol. 13, issue 3, 1-16
Abstract:
Atrial tachy-arrhytmias, such as atrial fibrillation (AF), are characterised by irregular electrical activity in the atria, generally associated with erratic excitation underlain by re-entrant scroll waves, fibrillatory conduction of multiple wavelets or rapid focal activity. Epidemiological studies have shown an increase in AF prevalence in the developed world associated with an ageing society, highlighting the need for effective treatment options. Catheter ablation therapy, commonly used in the treatment of AF, requires spatial information on atrial electrical excitation. The standard 12-lead electrocardiogram (ECG) provides a method for non-invasive identification of the presence of arrhythmia, due to irregularity in the ECG signal associated with atrial activation compared to sinus rhythm, but has limitations in providing specific spatial information. There is therefore a pressing need to develop novel methods to identify and locate the origin of arrhythmic excitation. Invasive methods provide direct information on atrial activity, but may induce clinical complications. Non-invasive methods avoid such complications, but their development presents a greater challenge due to the non-direct nature of monitoring. Algorithms based on the ECG signals in multiple leads (e.g. a 64-lead vest) may provide a viable approach. In this study, we used a biophysically detailed model of the human atria and torso to investigate the correlation between the morphology of the ECG signals from a 64-lead vest and the location of the origin of rapid atrial excitation arising from rapid focal activity and/or re-entrant scroll waves. A focus-location algorithm was then constructed from this correlation. The algorithm had success rates of 93% and 76% for correctly identifying the origin of focal and re-entrant excitation with a spatial resolution of 40 mm, respectively. The general approach allows its application to any multi-lead ECG system. This represents a significant extension to our previously developed algorithms to predict the AF origins in association with focal activities.Author summary: Atrial tachy-arrhythmias are associated with irregular excitation waves arising from re-entrant excitation, multiple wavelets or rapid focal activity. Identifying the origin of the irregular activity may be vital for diagnosis and treatment of the disorder. Where invasive and non-invasive methods provide approaches for such identification, both have associated disadvantages. In this study, we used a biophysically detailed model of the human atria and torso to develop an algorithm based on the correlation between the electrocardiogram (ECG) signal from a 64-lead vest and the location of rapid focal and re-entrant excitation. Using the properties of the atrial activation and the ECG signals, we developed a focus-location algorithm which is able to distinguish rapid focal activity from re-entrant scroll waves centred in the same location. Based on simulated data, the algorithm had success rates of 93% and 76% for correctly identifying the origin of focal and re-entrant excitation, respectively, and 88% for distinguish focal and re-entrant excitation, with no false positives. Inherited from our previous algorithm, it is also easily generalizable to any multi-lead ECG system.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005270 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 05270&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1005270
DOI: 10.1371/journal.pcbi.1005270
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().