EconPapers    
Economics at your fingertips  
 

Multiregional integration in the brain during resting-state fMRI activity

Etay Hay, Petra Ritter, Nancy J Lobaugh and Anthony R McIntosh

PLOS Computational Biology, 2017, vol. 13, issue 3, 1-20

Abstract: Data-driven models of functional magnetic resonance imaging (fMRI) activity can elucidate dependencies that involve the combination of multiple brain regions. Activity in some regions during resting-state fMRI can be predicted with high accuracy from the activities of other regions. However, it remains unclear in which regions activity depends on unique integration of multiple predictor regions. To address this question, sparse (parsimonious) models could serve to better determine key interregional dependencies by reducing false positives. We used resting-state fMRI data from 46 subjects, and for each region of interest (ROI) per subject we performed whole-brain recursive feature elimination (RFE) to select the minimal set of ROIs that best predicted activity in the modeled ROI. We quantified the dependence of activity on multiple predictor ROIs, by measuring the gain in prediction accuracy of models that incorporated multiple predictor ROIs compared to models that used a single predictor ROI. We identified regions that showed considerable evidence of multiregional integration and determined the key regions that contributed to their observed activity. Our models reveal fronto-parietal integration networks, little integration in primary sensory regions, as well as redundancy between some regions. Our study demonstrates the utility of whole-brain RFE to generate data-driven models with minimal sets of ROIs that predict activity with high accuracy. By determining the extent to which activity in each ROI depended on integration of signals from multiple ROIs, we find cortical integration networks during resting-state activity.Author summary: Models of fMRI activity can elucidate underlying dependencies that involve the combination of multiple brain regions. However, it remains unclear in which regions activity depends on unique integration of multiple predictor regions. To address this question, sparse (parsimonious) models could serve to better determine key interregional dependencies by reducing false positives. We used resting-state fMRI data, and for each brain region we performed whole-brain recursive feature elimination to select the minimal set of regions that best predicted activity in the region. We identified integrator regions by quantifying the gain in prediction accuracy of models that incorporated multiple predictor regions compared to single predictor region. Our study provides data-driven models that use minimal sets of regions to predict activity with high accuracy. By determining the extent to which activity in each region depended on integration of signals from multiple sources, we find cortical integration networks during resting-state activity.

Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005410 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 05410&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1005410

DOI: 10.1371/journal.pcbi.1005410

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pcbi00:1005410