EconPapers    
Economics at your fingertips  
 

Domain-based prediction of the human isoform interactome provides insights into the functional impact of alternative splicing

Mohamed Ali Ghadie, Luke Lambourne, Marc Vidal and Yu Xia

PLOS Computational Biology, 2017, vol. 13, issue 8, 1-20

Abstract: Alternative splicing is known to remodel protein-protein interaction networks (“interactomes”), yet large-scale determination of isoform-specific interactions remains challenging. We present a domain-based method to predict the isoform interactome from the reference interactome. First, we construct the domain-resolved reference interactome by mapping known domain-domain interactions onto experimentally-determined interactions between reference proteins. Then, we construct the isoform interactome by predicting that an isoform loses an interaction if it loses the domain mediating the interaction. Our prediction framework is of high-quality when assessed by experimental data. The predicted human isoform interactome reveals extensive network remodeling by alternative splicing. Protein pairs interacting with different isoforms of the same gene tend to be more divergent in biological function, tissue expression, and disease phenotype than protein pairs interacting with the same isoforms. Our prediction method complements experimental efforts, and demonstrates that integrating structural domain information with interactomes provides insights into the functional impact of alternative splicing.Author summary: Protein-protein interaction networks have been extensively used in systems biology to study the role of proteins in cell function and disease. However, current network biology studies typically assume that one gene encodes one protein isoform, ignoring the effect of alternative splicing. Alternative splicing allows a gene to produce multiple protein isoforms, by alternatively selecting distinct regions in the gene to be translated to protein products. Here, we present a computational method to predict and analyze the large-scale effect of alternative splicing on protein-protein interaction networks. Starting with a reference protein-protein interaction network determined by experiments, our method annotates protein-protein interactions with domain-domain interactions, and predicts that a protein isoform loses an interaction if it loses the domain mediating the interaction as a result of alternative splicing. Our predictions reveal the central role of alternative splicing in extensively remodeling the human protein-protein interaction network, and in increasing the functional complexity of the human cell. Our prediction method complements ongoing experimental efforts by predicting isoform-specific interactions for genes not tested yet by experiments and providing insights into the functional impact of alternative splicing.

Date: 2017
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005717 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 05717&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1005717

DOI: 10.1371/journal.pcbi.1005717

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-22
Handle: RePEc:plo:pcbi00:1005717