Flexibility to contingency changes distinguishes habitual and goal-directed strategies in humans
Julie J Lee and
Mehdi Keramati
PLOS Computational Biology, 2017, vol. 13, issue 9, 1-15
Abstract:
Decision-making in the real world presents the challenge of requiring flexible yet prompt behavior, a balance that has been characterized in terms of a trade-off between a slower, prospective goal-directed model-based (MB) strategy and a fast, retrospective habitual model-free (MF) strategy. Theory predicts that flexibility to changes in both reward values and transition contingencies can determine the relative influence of the two systems in reinforcement learning, but few studies have manipulated the latter. Therefore, we developed a novel two-level contingency change task in which transition contingencies between states change every few trials; MB and MF control predict different responses following these contingency changes, allowing their relative influence to be inferred. Additionally, we manipulated the rate of contingency changes in order to determine whether contingency change volatility would play a role in shifting subjects between a MB and MF strategy. We found that human subjects employed a hybrid MB/MF strategy on the task, corroborating the parallel contribution of MB and MF systems in reinforcement learning. Further, subjects did not remain at one level of MB/MF behaviour but rather displayed a shift towards more MB behavior over the first two blocks that was not attributable to the rate of contingency changes but rather to the extent of training. We demonstrate that flexibility to contingency changes can distinguish MB and MF strategies, with human subjects utilizing a hybrid strategy that shifts towards more MB behavior over blocks, consequently corresponding to a higher payoff.Author summary: To make good decisions, we must learn to associate actions with their true outcomes. Flexibility to changes in action/outcome relationships, therefore, is essential for optimal decision-making. For example, actions can lead to outcomes that change in value – one day, your favorite food is poorly made and thus less pleasant. Alternatively, changes can occur in terms of contingencies–ordering a dish of one kind and instead receiving another. How we respond to such changes is indicative of our decision-making strategy; habitual learners will continue to choose their favorite food even if the quality has gone down, whereas goal-directed learners will soon learn it is better to choose another dish. A popular paradigm probes the effect of value changes on decision-making, but the effect of contingency changes is still unexplored. Therefore, we developed a novel task to study the latter. We find that humans used a mixed habitual/goal-directed strategy in which they became more goal-directed over the course of the task, and also earned more rewards with increasing goal-directed behavior. This shows that flexibility to contingency changes is adaptive for learning from rewards, and indicates that flexibility to contingency changes can reveal which decision-making strategy is used.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005753 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 05753&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1005753
DOI: 10.1371/journal.pcbi.1005753
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().