EconPapers    
Economics at your fingertips  
 

Population-specific design of de-immunized protein biotherapeutics

Benjamin Schubert, Charlotta Schärfe, Pierre Dönnes, Thomas Hopf, Debora Marks and Oliver Kohlbacher

PLOS Computational Biology, 2018, vol. 14, issue 3, 1-19

Abstract: Immunogenicity is a major problem during the development of biotherapeutics since it can lead to rapid clearance of the drug and adverse reactions. The challenge for biotherapeutic design is therefore to identify mutants of the protein sequence that minimize immunogenicity in a target population whilst retaining pharmaceutical activity and protein function. Current approaches are moderately successful in designing sequences with reduced immunogenicity, but do not account for the varying frequencies of different human leucocyte antigen alleles in a specific population and in addition, since many designs are non-functional, require costly experimental post-screening. Here, we report a new method for de-immunization design using multi-objective combinatorial optimization. The method simultaneously optimizes the likelihood of a functional protein sequence at the same time as minimizing its immunogenicity tailored to a target population. We bypass the need for three-dimensional protein structure or molecular simulations to identify functional designs by automatically generating sequences using probabilistic models that have been used previously for mutation effect prediction and structure prediction. As proof-of-principle we designed sequences of the C2 domain of Factor VIII and tested them experimentally, resulting in a good correlation with the predicted immunogenicity of our model.Author summary: Therapeutic proteins have become an important area of pharmaceutical research and have been successfully applied to treat many diseases in the last decades. However, biotherapeutics suffer from the formation of anti-drug antibodies, which can reduce the efficacy of the drug or even result in severe adverse effects. A main contributor to the antibody formation is a T-cell mediated immune reaction caused by presentation of small immunogenic peptides derived from the biotherapeutic. Targeting these peptides via sequence alterations reduces the immunogenicity of the biotherapeutic but inevitably will have effects on structure and function. Experimentally determining optimal mutations is not feasible due to the sheer number of possible sequence alterations. Therefore, computational approaches are needed that can effectively cover the complete search space. Here, we present a computational method that finds provable optimal designs that simultaneously optimize immunogenicity and structural integrity of the biotherapeutic. It relies solely on sequence information by utilizing recent advances in protein ab initio prediction and incorporates immunogenicity prediction methods. Thus, the approach presents a valuable tool for bioengineers to explore the design space to find viable candidate designs that can be experimentally tested and further refined.

Date: 2018
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005983 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 05983&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1005983

DOI: 10.1371/journal.pcbi.1005983

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pcbi00:1005983