Cox-nnet: An artificial neural network method for prognosis prediction of high-throughput omics data
Travers Ching,
Xun Zhu and
Lana X Garmire
PLOS Computational Biology, 2018, vol. 14, issue 4, 1-18
Abstract:
Artificial neural networks (ANN) are computing architectures with many interconnections of simple neural-inspired computing elements, and have been applied to biomedical fields such as imaging analysis and diagnosis. We have developed a new ANN framework called Cox-nnet to predict patient prognosis from high throughput transcriptomics data. In 10 TCGA RNA-Seq data sets, Cox-nnet achieves the same or better predictive accuracy compared to other methods, including Cox-proportional hazards regression (with LASSO, ridge, and mimimax concave penalty), Random Forests Survival and CoxBoost. Cox-nnet also reveals richer biological information, at both the pathway and gene levels. The outputs from the hidden layer node provide an alternative approach for survival-sensitive dimension reduction. In summary, we have developed a new method for accurate and efficient prognosis prediction on high throughput data, with functional biological insights. The source code is freely available at https://github.com/lanagarmire/cox-nnet.Author summary: The increasing application of high-througput transcriptomics data to predict patient prognosis demands modern computational methods. With the re-gaining popularity of artificial neural networks, we asked if a refined neural network model could be used to predict patient survival, as an alternative to the conventional methods, such as Cox proportional hazards (Cox-PH) methods with LASSO or ridge penalization. To this end, we have developed a neural network extension of the Cox regression model, called Cox-nnet. It is optimized for survival prediction from high throughput gene expression data, with comparable or better performance than other conventional methods. More importantly, Cox-nnet reveals much richer biological information, at both the pathway and gene levels, by analyzing features represented in the hidden layer nodes in Cox-nnet. Additionally, we propose to use hidden node features as a new approach for dimension reduction during survival data analysis.
Date: 2018
References: Add references at CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006076 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 06076&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1006076
DOI: 10.1371/journal.pcbi.1006076
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().