EconPapers    
Economics at your fingertips  
 

Regulation of Pom cluster dynamics in Myxococcus xanthus

Silke Bergeler and Erwin Frey

PLOS Computational Biology, 2018, vol. 14, issue 8, 1-28

Abstract: Precise positioning of the cell division site is essential for the correct segregation of the genetic material into the two daughter cells. In the bacterium Myxococcus xanthus, the proteins PomX and PomY form a cluster on the chromosome that performs a biased random walk to midcell and positively regulates cell division there. PomZ, an ATPase, is necessary for tethering of the cluster to the nucleoid and regulates its movement towards midcell. It has remained unclear how the cluster dynamics change when the biochemical parameters, such as the attachment rates of PomZ dimers to the nucleoid and the cluster, the ATP hydrolysis rate of PomZ or the mobility of PomZ interacting with the nucleoid and cluster, are varied. To answer these questions, we investigate a one-dimensional model that includes the nucleoid, the Pom cluster and PomZ proteins. We find that a mechanism based on the diffusive PomZ fluxes on the nucleoid into the cluster can explain the latter’s midnucleoid localization for a broad parameter range. Furthermore, there is an ATP hydrolysis rate that minimizes the time the cluster needs to reach midnucleoid. If the dynamics of PomZ on the nucleoid is slow relative to the cluster’s velocity, we observe oscillatory cluster movements around midnucleoid. To understand midnucleoid localization, we developed a semi-analytical approach that dissects the net movement of the cluster into its components: the difference in PomZ fluxes into the cluster from either side, the force exerted by a single PomZ dimer on the cluster and the effective friction coefficient of the cluster. Importantly, we predict that the Pom cluster oscillates around midnucleoid if the diffusivity of PomZ on the nucleoid is reduced. A similar approach to that applied here may also prove useful for cargo localization in ParABS systems.Author summary: In order for the rod-shaped bacterium M. xanthus to reproduce, its genetic content must be duplicated, distributed equally to the two cell halves and then the cell must divide precisely at midcell. Three proteins, called PomX, PomY and PomZ, are important for the localization of the cell division site at midcell. PomX and PomY form a cluster and PomZ tethers this cluster to the bacterial DNA or nucleoid (region containing the chromosomal DNA) and is important for the movement of the cluster from the nucleoid pole towards midcell. We are interested in the question how the cluster trajectories change when the PomZ dynamics is varied. To address this question we investigate a previously developed mathematical model that incorporates the nucleoid, the cluster and PomZ. We simulated the cluster trajectories for different model parameters, such as different diffusion constants of PomZ on the nucleoid. Interestingly, when PomZ diffuses slowly on the nucleoid, we observed oscillatory cluster movements around midcell. Our results provide general insights into intracellular positioning of proteins.

Date: 2018
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006358 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 06358&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1006358

DOI: 10.1371/journal.pcbi.1006358

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-22
Handle: RePEc:plo:pcbi00:1006358