Dorsal anterior cingulate-brainstem ensemble as a reinforcement meta-learner
Massimo Silvetti,
Eliana Vassena,
Elger Abrahamse and
Tom Verguts
PLOS Computational Biology, 2018, vol. 14, issue 8, 1-32
Abstract:
Optimal decision-making is based on integrating information from several dimensions of decisional space (e.g., reward expectation, cost estimation, effort exertion). Despite considerable empirical and theoretical efforts, the computational and neural bases of such multidimensional integration have remained largely elusive. Here we propose that the current theoretical stalemate may be broken by considering the computational properties of a cortical-subcortical circuit involving the dorsal anterior cingulate cortex (dACC) and the brainstem neuromodulatory nuclei: ventral tegmental area (VTA) and locus coeruleus (LC). From this perspective, the dACC optimizes decisions about stimuli and actions, and using the same computational machinery, it also modulates cortical functions (meta-learning), via neuromodulatory control (VTA and LC). We implemented this theory in a novel neuro-computational model–the Reinforcement Meta Learner (RML). We outline how the RML captures critical empirical findings from an unprecedented range of theoretical domains, and parsimoniously integrates various previous proposals on dACC functioning.Author summary: A major challenge for all organisms is selecting optimal behaviour to obtain resources while minimizing energetic and other expenses. Evolution provided mammals with exceptional decision-making capabilities to face this challenge. Even though neuroscientists have identified a heterogeneous and distributed set of brain structures to be involved, a comprehensive theory about the biological and computational basis of such decision-making is yet to be formulated. We propose that the interaction between the medial prefrontal cortex (a part of the frontal lobes) and the subcortical nuclei releasing catecholaminergic neuromodulators will be key to such a theory. We argue that this interaction allows both the selection of optimal behaviour and, more importantly, the optimal modulation of the very brain circuits that drive such behavioral selection (i.e., meta-learning). We implemented this theory in a novel neuro-computational model, the Reinforcement Meta-Learner (RML). By means of computer simulations we showed that the RML provides a biological and computational account for a set of neuroscientific data with unprecedented scope, thereby suggesting a critical mechanism of decision-making in the mammalian brain.
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006370 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 06370&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1006370
DOI: 10.1371/journal.pcbi.1006370
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().