EconPapers    
Economics at your fingertips  
 

Characterising seasonal influenza epidemiology using primary care surveillance data

Robert C Cope, Joshua V Ross, Monique Chilver, Nigel P Stocks and Lewis Mitchell

PLOS Computational Biology, 2018, vol. 14, issue 8, 1-21

Abstract: Understanding the epidemiology of seasonal influenza is critical for healthcare resource allocation and early detection of anomalous seasons. It can be challenging to obtain high-quality data of influenza cases specifically, as clinical presentations with influenza-like symptoms may instead be cases of one of a number of alternate respiratory viruses. We use a new dataset of confirmed influenza virological data from 2011-2016, along with high-quality denominators informing a hierarchical observation process, to model seasonal influenza dynamics in New South Wales, Australia. We use approximate Bayesian computation to estimate parameters in a climate-driven stochastic epidemic model, including the basic reproduction number R0, the proportion of the population susceptible to the circulating strain at the beginning of the season, and the probability an infected individual seeks treatment. We conclude that R0 and initial population susceptibility were strongly related, emphasising the challenges of identifying these parameters. Relatively high R0 values alongside low initial population susceptibility were among the results most consistent with these data. Our results reinforce the importance of distinguishing between R0 and the effective reproduction number (Re) in modelling studies.Author summary: When patients present to their doctor with influenza-like symptoms, they may have influenza, or some other respiratory virus. The only way to discriminate between these viruses is with an expensive test, which is not performed in many cases. Additionally, results other than influenza may not be reported. This means that it can be difficult to determine how much influenza is circulating in the population each season. We used a unique dataset of confirmed influenza with denominators to fit models for seasonal influenza in New South Wales, Australia. Knowing the denominators allowed us to estimate population level trends. We found that the relationship between influenza transmission rates and immunity due to previous infections was critical, with relatively high transmission corresponding to substantial preexisting immunity likely. This existing immunity is critical to understanding and effectively modeling influenza dynamics.

Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006377 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 06377&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1006377

DOI: 10.1371/journal.pcbi.1006377

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-22
Handle: RePEc:plo:pcbi00:1006377