EconPapers    
Economics at your fingertips  
 

A simple computer vision pipeline reveals the effects of isolation on social interaction dynamics in Drosophila

Guangda Liu, Tanmay Nath, Gerit A Linneweber, Annelies Claeys, Zhengyu Guo, Jin Li, Mercedes Bengochea, Steve De Backer, Barbara Weyn, Manu Sneyders, Hans Nicasy, Peng Yu, Paul Scheunders and Bassem A Hassan

PLOS Computational Biology, 2018, vol. 14, issue 8, 1-23

Abstract: Isolation profoundly influences social behavior in all animals. In humans, isolation has serious effects on health. Drosophila melanogaster is a powerful model to study small-scale, temporally-transient social behavior. However, longer-term analysis of large groups of flies is hampered by the lack of effective and reliable tools. We built a new imaging arena and improved the existing tracking algorithm to reliably follow a large number of flies simultaneously. Next, based on the automatic classification of touch and graph-based social network analysis, we designed an algorithm to quantify changes in the social network in response to prior social isolation. We observed that isolation significantly and swiftly enhanced individual and local social network parameters depicting near-neighbor relationships. We explored the genome-wide molecular correlates of these behavioral changes and found that whereas behavior changed throughout the six days of isolation, gene expression alterations occurred largely on day one. These changes occurred mostly in metabolic genes, and we verified the metabolic changes by showing an increase of lipid content in isolated flies. In summary, we describe a highly reliable tracking and analysis pipeline for large groups of flies that we use to unravel the behavioral, molecular and physiological impact of isolation on social network dynamics in Drosophila.Author summary: Social isolation severely affects the behavior and physiology of social animals, including humans. The fruit fly is a powerful model for studying the mechanisms of development, health and disease and is also used to study social behaviors such as mating and aggression. However, these studies are limited to examining few individuals for shorts amounts of time, due to the lack of effective computational tools for the analysis of large groups over prolonged time. To overcome this hurdle, we built a new behavioral arena and developed new software that accurately tracks many flies simultaneously over long time periods. The arena is cheap and easy to build and the software works with low resolution videos. Using these improved tools, we studied social isolation in groups of male flies. We found that isolation caused flies to form stronger interactions with neighboring flies in their social network. These behavioral changes were preceded by transient changes in the expression of metabolism genes and eventually resulted in isolated flies accumulating fat, as has been previously observed in studies in mice and humans. Our study opens the door for the use of fruit flies in future studies of social isolation.

Date: 2018
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006410 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 06410&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1006410

DOI: 10.1371/journal.pcbi.1006410

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-22
Handle: RePEc:plo:pcbi00:1006410