EconPapers    
Economics at your fingertips  
 

Self-organized traffic via priority rules in leaf-cutting ants

Daniel Strömbom and Audrey Dussutour

PLOS Computational Biology, 2018, vol. 14, issue 10, 1-13

Abstract: Ants, termites and humans often form well-organized and highly efficient trails between different locations. Yet the microscopic traffic rules responsible for this organization and efficiency are not fully understood. In previous experimental studies with leaf-cutting ants (Atta colombica), a set of local priority rules were isolated and it was proposed that these rules govern the temporal and spatial organization of the traffic on the trails. Here we introduce a model based on these priority rules to investigate whether they are sufficient to produce traffic similar to that observed in the experiments on both a narrow and a wider trail. We establish that the model is able to reproduce key characteristics of the traffic on the trails. In particular, we show that the proposed priority rules induce de-synchronization into clusters of inbound and outbound ants on a narrow trail, and that priority-type dependent segregated traffic emerges on a wider trail. Due to the generic nature of the proposed priority rules we speculate that they may be used to model traffic organization in a variety of other ant species.Author summary: Ants often form trails to transport food and supplies they find back to their nest. These trails have a function similar to the roads that connect people’s homes with the local mall, but while the traffic rules that cars on our roads are supposed to follow are well known the traffic rules ants use on their trails are still relatively unknown. Earlier experiments with leaf-cutting ants have suggested a set of simple traffic rules that ants may be attempting to follow on their trails. However, it is difficult to experimentally verify the link between the proposed rules and the observed traffic organization. Modeling is a useful way to link the behaviors isolated at the individual level and the pattern recorded at the collective level. Here we present and analyze a computational model based on the proposed traffic rules. We find that, with some modifications, the proposed rules are indeed sufficient to reproduce key features of the overall ant traffic observed in the experiments. Strengthening our belief that these traffic rules might be employed by the leaf-cutting ants to regulate traffic organization and due of their simplicity we speculate that similar rules may be used by other ant species.

Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006523 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 06523&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1006523

DOI: 10.1371/journal.pcbi.1006523

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-22
Handle: RePEc:plo:pcbi00:1006523