The empirical characteristics of human pattern vision defy theoretically-driven expectations
Peter Neri
PLOS Computational Biology, 2018, vol. 14, issue 12, 1-42
Abstract:
Contrast is the most fundamental property of images. Consequently, any comprehensive model of biological vision must incorporate this attribute and provide a veritable description of its impact on visual perception. Current theoretical and computational models predict that vision should modify its characteristics at low contrast: for example, it should become broader (more lowpass) to protect from noise, as often demonstrated by individual neurons. We find that the opposite is true for human discrimination of elementary image elements: vision becomes sharper, not broader, as contrast approaches threshold levels. Furthermore, it suffers from increased internal variability at low contrast and it transitions from a surprisingly linear regime at high contrast to a markedly nonlinear processing mode in the low-contrast range. These characteristics are hard-wired in that they happen on a single trial without memory or expectation. Overall, the empirical results urge caution when attempting to interpret human vision from the standpoint of optimality and related theoretical constructs. Direct measurements of this phenomenon indicate that the actual constraints derive from intrinsic architectural features, such as the co-existence of complex-cell-like and simple-cell-like components. Small circuits built around these elements can indeed account for the empirical results, but do not appear to operate in a manner that conforms to optimality even approximately. More generally, our results provide a compelling demonstration of how far we still are from securing an adequate computational account of the most basic operations carried out by human vision.Author summary: We can view cortex from two fundamentally different perspectives: a powerful device for performing optimal inference, or an assembly of biological components not built for achieving statistical optimality. The former approach is attractive thanks to its elegance and potentially wide applicability, however the basic facts of human pattern vision do not support it. Instead, they indicate that the idiosyncratic behaviour produced by visual cortex is primarily dictated by its hardware components. The output of these components can be steered towards optimality by our cognitive apparatus, but only to a marginal extent. We conclude that current theories of visually-guided behaviour are at best inadequate, calling for a rebalanced view of the roles played by theoretical and experimental thinking about this function.
Date: 2018
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006585 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 06585&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1006585
DOI: 10.1371/journal.pcbi.1006585
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().