Revealing evolutionary constraints on proteins through sequence analysis
Shou-Wen Wang,
Anne-Florence Bitbol and
Ned S Wingreen
PLOS Computational Biology, 2019, vol. 15, issue 4, 1-16
Abstract:
Statistical analysis of alignments of large numbers of protein sequences has revealed “sectors” of collectively coevolving amino acids in several protein families. Here, we show that selection acting on any functional property of a protein, represented by an additive trait, can give rise to such a sector. As an illustration of a selected trait, we consider the elastic energy of an important conformational change within an elastic network model, and we show that selection acting on this energy leads to correlations among residues. For this concrete example and more generally, we demonstrate that the main signature of functional sectors lies in the small-eigenvalue modes of the covariance matrix of the selected sequences. However, secondary signatures of these functional sectors also exist in the extensively-studied large-eigenvalue modes. Our simple, general model leads us to propose a principled method to identify functional sectors, along with the magnitudes of mutational effects, from sequence data. We further demonstrate the robustness of these functional sectors to various forms of selection, and the robustness of our approach to the identification of multiple selected traits.Author summary: Proteins play crucial parts in all cellular processes, and their functions are encoded in their amino-acid sequences. Recently, statistical analyses of protein sequence alignments have demonstrated the existence of “sectors” of collectively correlated amino acids. What is the origin of these sectors? Here, we propose a simple underlying origin of protein sectors: they can arise from selection acting on any collective protein property. We find that the main signature of these functional sectors lies in the low-eigenvalue modes of the covariance matrix of the selected sequences. A better understanding of protein sectors will make it possible to discern collective protein properties directly from sequences, as well as to design new functional sequences, with far-reaching applications in synthetic biology.
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007010 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 07010&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1007010
DOI: 10.1371/journal.pcbi.1007010
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().