EconPapers    
Economics at your fingertips  
 

Network analyses to quantify effects of host movement in multilevel disease transmission models using foot and mouth disease in Cameroon as a case study

Laura W Pomeroy, Hyeyoung Kim, Ningchuan Xiao, Mark Moritz and Rebecca Garabed

PLOS Computational Biology, 2019, vol. 15, issue 8, 1-17

Abstract: The dynamics of infectious diseases are greatly influenced by the movement of both susceptible and infected hosts. To accurately represent disease dynamics among a mobile host population, detailed movement models have been coupled with disease transmission models. However, a number of different host movement models have been proposed, each with their own set of assumptions and results that differ from the other models. Here, we compare two movement models coupled to the same disease transmission model using network analyses. This application of network analysis allows us to evaluate the fit and accuracy of the movement model in a multilevel modeling framework with more detail than established statistical modeling fitting methods. We used data that detailed mobile pastoralists’ movements as input for 100 stochastic simulations of a Spatio-Temporal Movement (STM) model and 100 stochastic simulations of an Individual Movement Model (IMM). Both models represent dynamic movement and subsequent contacts. We generated networks in which nodes represent camps and edges represent the distance between camps. We simulated pathogen transmission over these networks and tested five network metrics–strength, betweenness centrality, three-step reach, density, and transitivity–to determine which could predict disease simulation outcomes and thereby be used to correlate model simulation results with disease transmission simulations. We found that strength, network density, and three-step reach of movement model results correlated with the final epidemic size of outbreak simulations. Betweenness centrality only weakly correlated for the IMM model. Transitivity only weakly correlated for the STM model and time-varying IMM model metrics. We conclude that movement models coupled with disease transmission models can affect disease transmission results and should be carefully considered and vetted when modeling pathogen spread in mobile host populations. Strength, network density, and three-step reach can be used to evaluate movement models before disease simulations to predict final outbreak sizes. These findings can contribute to the analysis of multilevel models across systems.Author summary: Epidemics of infectious disease vary geographically and vary through time. A large part of this variation is caused by movement of individuals who are susceptible to the disease or infected with the disease. To study how movement affects epidemics, researchers often combine movement models with transmission models. However, multiple movement models have been proposed, and their effect on infectious disease model output is not well understood. Here, we combine two different movement models that we developed to represent mobile pastoralists in the Far North Region, Cameroon, with the same disease transmission model. We use network metrics to test how different movement models can affect the output of the disease transmission model. We found that three metrics could be applied to movement model output in order to predict epidemic model output. We conclude that movement models coupled with disease transmission models can affect disease transmission results and should be carefully considered and vetted when modeling epidemics.

Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007184 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 07184&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1007184

DOI: 10.1371/journal.pcbi.1007184

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-22
Handle: RePEc:plo:pcbi00:1007184