TAPES: A tool for assessment and prioritisation in exome studies
Alexandre Xavier,
Rodney J Scott and
Bente A Talseth-Palmer
PLOS Computational Biology, 2019, vol. 15, issue 10, 1-9
Abstract:
Next-generation sequencing continues to grow in importance for researchers. Exome sequencing became a widespread tool to further study the genomic basis of Mendelian diseases. In an effort to identify pathogenic variants, reject benign variants and better predict variant effects in downstream analysis, the American College of Medical Genetics (ACMG) published a set of criteria in 2015. While there are multiple publicly available software’s available to assign the ACMG criteria, most of them do not take into account multi-sample variant calling formats. Here we present a tool for assessment and prioritisation in exome studies (TAPES, https://github.com/a-xavier/tapes), an open-source tool designed for small-scale exome studies. TAPES can quickly assign ACMG criteria using ANNOVAR or VEP annotated files and implements a model to transform the categorical ACMG criteria into a continuous probability, allowing for a more accurate classification of pathogenicity or benignity of variants. In addition, TAPES can work with cohorts sharing a common phenotype by utilising a simple enrichment analysis, requiring no controls as an input as well as providing powerful filtering and reporting options. Finally, benchmarks showed that TAPES outperforms available tools to detect both pathogenic and benign variants, while also integrating the identification of enriched variants in study cohorts compared to the general population, making it an ideal tool to evaluate a smaller cohort before using bigger scale studies.Author summary: New sequencing techniques allow researchers to study the genetic basis of diseases. Predicting the effect of genetic variants is critical to understand the mechanisms underlying disease. Available software can predict how pathogenic a variant is, but do not take into account the abundance of a variants in a cohort. TAPES is a simple open-source tool that can both more accurately predict pathogenicity (using probability over categories) and provide insight on variants enrichment in a cohort sharing the same disease.
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007453 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 07453&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1007453
DOI: 10.1371/journal.pcbi.1007453
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().