Medusa: Software to build and analyze ensembles of genome-scale metabolic network reconstructions
Gregory L Medlock,
Thomas J Moutinho and
Jason A Papin
PLOS Computational Biology, 2020, vol. 16, issue 4, 1-11
Abstract:
Uncertainty in the structure and parameters of networks is ubiquitous across computational biology. In constraint-based reconstruction and analysis of metabolic networks, this uncertainty is present both during the reconstruction of networks and in simulations performed with them. Here, we present Medusa, a Python package for the generation and analysis of ensembles of genome-scale metabolic network reconstructions. Medusa builds on the COBRApy package for constraint-based reconstruction and analysis by compressing a set of models into a compact ensemble object, providing functions for the generation of ensembles using experimental data, and extending constraint-based analyses to ensemble scale. We demonstrate how Medusa can be used to generate ensembles and perform ensemble simulations, and how machine learning can be used in conjunction with Medusa to guide the curation of genome-scale metabolic network reconstructions. Medusa is available under the permissive MIT license from the Python Packaging Index (https://pypi.org) and from github (https://github.com/opencobra/Medusa), and comprehensive documentation is available at https://medusa.readthedocs.io/en/latest.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007847 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 07847&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1007847
DOI: 10.1371/journal.pcbi.1007847
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().