EconPapers    
Economics at your fingertips  
 

A topological data analytic approach for discovering biophysical signatures in protein dynamics

Wai Shing Tang, Gabriel Monteiro da Silva, Henry Kirveslahti, Erin Skeens, Bibo Feng, Timothy Sudijono, Kevin K Yang, Sayan Mukherjee, Brenda Rubenstein and Lorin Crawford

PLOS Computational Biology, 2022, vol. 18, issue 5, 1-42

Abstract: Identifying structural differences among proteins can be a non-trivial task. When contrasting ensembles of protein structures obtained from molecular dynamics simulations, biologically-relevant features can be easily overshadowed by spurious fluctuations. Here, we present SINATRA Pro, a computational pipeline designed to robustly identify topological differences between two sets of protein structures. Algorithmically, SINATRA Pro works by first taking in the 3D atomic coordinates for each protein snapshot and summarizing them according to their underlying topology. Statistically significant topological features are then projected back onto a user-selected representative protein structure, thus facilitating the visual identification of biophysical signatures of different protein ensembles. We assess the ability of SINATRA Pro to detect minute conformational changes in five independent protein systems of varying complexities. In all test cases, SINATRA Pro identifies known structural features that have been validated by previous experimental and computational studies, as well as novel features that are also likely to be biologically-relevant according to the literature. These results highlight SINATRA Pro as a promising method for facilitating the non-trivial task of pattern recognition in trajectories resulting from molecular dynamics simulations, with substantially increased resolution.Author summary: Structural features of proteins often serve as signatures of their biological function and molecular binding activity. Elucidating these structural features is essential for a full understanding of underlying biophysical mechanisms. While there are existing methods aimed at identifying structural differences between protein variants, such methods do not have the capability to jointly infer both geometric and dynamic changes, simultaneously. In this paper, we propose SINATRA Pro, a computational framework for extracting key structural features between two sets of proteins. SINATRA Pro robustly outperforms standard techniques in pinpointing the physical locations of both static and dynamic signatures across various types of protein ensembles, and it does so with improved resolution.

Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1010045 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 10045&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1010045

DOI: 10.1371/journal.pcbi.1010045

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-05-31
Handle: RePEc:plo:pcbi00:1010045