Error-independent effect of sensory uncertainty on motor learning when both feedforward and feedback control processes are engaged
Christopher L Hewitson,
David M Kaplan and
Matthew J Crossley
PLOS Computational Biology, 2023, vol. 19, issue 9, 1-45
Abstract:
Integrating sensory information during movement and adapting motor plans over successive movements are both essential for accurate, flexible motor behaviour. When an ongoing movement is off target, feedback control mechanisms update the descending motor commands to counter the sensed error. Over longer timescales, errors induce adaptation in feedforward planning so that future movements become more accurate and require less online adjustment from feedback control processes. Both the degree to which sensory feedback is integrated into an ongoing movement and the degree to which movement errors drive adaptive changes in feedforward motor plans have been shown to scale inversely with sensory uncertainty. However, since these processes have only been studied in isolation from one another, little is known about how they are influenced by sensory uncertainty in real-world movement contexts where they co-occur. Here, we show that sensory uncertainty may impact feedforward adaptation of reaching movements differently when feedback integration is present versus when it is absent. In particular, participants gradually adjust their movements from trial-to-trial in a manner that is well characterised by a slow and consistent envelope of error reduction. Riding on top of this slow envelope, participants exhibit large and abrupt changes in their initial movement vectors that are strongly correlated with the degree of sensory uncertainty present on the previous trial. However, these abrupt changes are insensitive to the magnitude and direction of the sensed movement error. These results prompt important questions for current models of sensorimotor learning under uncertainty and open up new avenues for future exploration in the field.Author summary: A large body of literature shows that sensory uncertainty inversely scales the degree of error-driven corrections made to motor plans from one trial to the next. However, by limiting sensory feedback to the endpoint of movements, these studies prevent corrections from taking place during the movement. Here, we show that when such corrections are promoted, sensory uncertainty punctuates between-trial movement corrections with abrupt changes that closely track the degree of sensory uncertainty but are insensitive to the magnitude and direction of movement error. This result marks a significant departure from existing findings and opens up new paths for future exploration.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1010526 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 10526&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1010526
DOI: 10.1371/journal.pcbi.1010526
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().