Stochastic dynamics of Type-I interferon responses
Benjamin D Maier,
Luis U Aguilera,
Sven Sahle,
Pascal Mutz,
Priyata Kalra,
Christopher Dächert,
Ralf Bartenschlager,
Marco Binder and
Ursula Kummer
PLOS Computational Biology, 2022, vol. 18, issue 10, 1-24
Abstract:
Interferon (IFN) activates the transcription of several hundred of IFN stimulated genes (ISGs) that constitute a highly effective antiviral defense program. Cell-to-cell variability in the induction of ISGs is well documented, but its source and effects are not completely understood. The molecular mechanisms behind this heterogeneity have been related to randomness in molecular events taking place during the JAK-STAT signaling pathway. Here, we study the sources of variability in the induction of the IFN-alpha response by using MxA and IFIT1 activation as read-out. To this end, we integrate time-resolved flow cytometry data and stochastic modeling of the JAK-STAT signaling pathway. The complexity of the IFN response was matched by fitting probability distributions to time-course flow cytometry snapshots. Both, experimental data and simulations confirmed that the MxA and IFIT1 induction circuits generate graded responses rather than all-or-none responses. Subsequently, we quantify the size of the intrinsic variability at different steps in the pathway. We found that stochastic effects are transiently strong during the ligand-receptor activation steps and the formation of the ISGF3 complex, but negligible for the final induction of the studied ISGs. We conclude that the JAK-STAT signaling pathway is a robust biological circuit that efficiently transmits information under stochastic environments.Author summary: We investigate the impact of intrinsic and extrinsic noise on the reliability of interferon signaling. Information must be transduced robustly despite existing biochemical variability and at the same time the system has to allow for cellular variability to tune it against changing environments. Getting insights into stochasticity in signaling networks is crucial to understand cellular dynamics and decision-making processes. To this end, we developed a detailed stochastic computational model based on single cell data. We are able to show that reliability is achieved despite high noise at the receptor level.
Date: 2022
References: Add references at CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1010623 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 10623&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1010623
DOI: 10.1371/journal.pcbi.1010623
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().