EconPapers    
Economics at your fingertips  
 

Conditional probabilistic diffusion model driven synthetic radiogenomic applications in breast cancer

Lianghong Chen, Zi Huai Huang, Yan Sun, Mike Domaratzki, Qian Liu and Pingzhao Hu

PLOS Computational Biology, 2024, vol. 20, issue 10, 1-24

Abstract: This study addresses the heterogeneity of Breast Cancer (BC) by employing a Conditional Probabilistic Diffusion Model (CPDM) to synthesize Magnetic Resonance Images (MRIs) based on multi-omic data, including gene expression, copy number variation, and DNA methylation. The lack of paired medical images and genomics data in previous studies presented a challenge, which the CPDM aims to overcome. The well-trained CPDM successfully generated synthetic MRIs for 726 TCGA-BRCA patients, who lacked actual MRIs, using their multi-omic profiles. Evaluation metrics such as Frechet’s Inception Distance (FID), Mean Square Error (MSE), and Structural Similarity Index Measure (SSIM) demonstrated the CPDM’s effectiveness, with an FID of 2.02, an MSE of 0.02, and an SSIM of 0.59 based on the 15-fold cross-validation. The synthetic MRIs were used to predict clinical attributes, achieving an Area Under the Receiver-Operating-Characteristic curve (AUROC) of 0.82 and an Area Under the Precision-Recall Curve (AUPRC) of 0.84 for predicting ER+/HER2+ subtypes. Additionally, the MRIs served to accurately predicted BC patient survival with a Concordance-index (C-index) score of 0.88, outperforming other baseline models. This research demonstrates the potential of CPDMs in generating MRIs based on BC patients’ genomic profiles, offering valuable insights for radiogenomic research and advancements in precision medicine. The study provides a novel approach to understanding BC heterogeneity for early detection and personalized treatment.Author summary: Breast cancer (BC) is known for its diverse characteristics, which makes it crucial for early detection and personalized treatment. Combining medical images with genomics provides a fresh approach to studying this diversity, leading to the emergence of a new field called radiogenomics.

Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1012490 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 12490&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1012490

DOI: 10.1371/journal.pcbi.1012490

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-05-31
Handle: RePEc:plo:pcbi00:1012490