EconPapers    
Economics at your fingertips  
 

Information transmission in a cell monolayer: A numerical study

Paweł Nałęcz-Jawecki, Przemysław Szyc, Frederic Grabowski, Marek Kochańczyk and Tomasz Lipniacki

PLOS Computational Biology, 2025, vol. 21, issue 2, 1-24

Abstract: Motivated by the spatiotemporal waves of MAPK/ERK activity, crucial for long-range communication in regenerating tissues, we investigated stochastic homoclinic fronts propagating through channels formed by directly interacting cells. We evaluated the efficiency of long-range communication in these channels by examining the rate of information transmission. Our study identified the stochastic phenomena that reduce this rate: front propagation failure, new front spawning, and variability in the front velocity. We found that a trade-off between the frequencies of propagation failures and new front spawning determines the optimal channel width (which geometrically determines the front length). The optimal frequency of initiating new waves is determined by a trade-off between the input information rate (higher with more frequent initiation) and the fidelity of information transmission (lower with more frequent initiation). Our analysis provides insight into the relative timescales of intra- and intercellular processes necessary for successful wave propagation.Author summary: In biological tissues, traveling waves of cellular activity are observed in the process of wound healing when they coordinate cell replication and collective migration. These waves can carry information over long distances. However, random effects on the single-cell level can affect wave propagation and disrupt information flow. In this paper, using a numerical model we classified these stochastic events and quantified the maximum range and frequency of such waves and their capacity to carry information. We discovered that most effective transmission occurs in relatively narrow channels (formed by directly interacting cells), and that the refractory time, in which a cell is resistant to activation by neighboring cells, must be long with respect to the time needed for cell activation. The optimal time intervals between the initiated waves are of order of few refractory times (depending on channel length).

Date: 2025
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1012846 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 12846&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1012846

DOI: 10.1371/journal.pcbi.1012846

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-05-31
Handle: RePEc:plo:pcbi00:1012846