The Preclinical Natural History of Serous Ovarian Cancer: Defining the Target for Early Detection
Patrick O Brown and
Chana Palmer
PLOS Medicine, 2009, vol. 6, issue 7, 1-14
Abstract:
Pat Brown and colleagues carry out a modeling study and define what properties a biomarker-based screening test would require in order to be clinically useful.Background: Ovarian cancer kills approximately 15,000 women in the United States every year, and more than 140,000 women worldwide. Most deaths from ovarian cancer are caused by tumors of the serous histological type, which are rarely diagnosed before the cancer has spread. Rational design of a potentially life-saving early detection and intervention strategy requires understanding the lesions we must detect in order to prevent lethal progression. Little is known about the natural history of lethal serous ovarian cancers before they become clinically apparent. We can learn about this occult period by studying the unsuspected serous cancers that are discovered in a small fraction of apparently healthy women who undergo prophylactic bilateral salpingo-oophorectomy (PBSO). Methods and Findings: We developed models for the growth, progression, and detection of occult serous cancers on the basis of a comprehensive analysis of published data on serous cancers discovered by PBSO in BRCA1 mutation carriers. Our analysis yielded several critical insights into the early natural history of serous ovarian cancer. First, these cancers spend on average more than 4 y as in situ, stage I, or stage II cancers and approximately 1 y as stage III or IV cancers before they become clinically apparent. Second, for most of the occult period, serous cancers are less than 1 cm in diameter, and not visible on gross examination of the ovaries and Fallopian tubes. Third, the median diameter of a serous ovarian cancer when it progresses to an advanced stage (stage III or IV) is about 3 cm. Fourth, to achieve 50% sensitivity in detecting tumors before they advance to stage III, an annual screen would need to detect tumors of 1.3 cm in diameter; 80% detection sensitivity would require detecting tumors less than 0.4 cm in diameter. Fifth, to achieve a 50% reduction in serous ovarian cancer mortality with an annual screen, a test would need to detect tumors of 0.5 cm in diameter. Conclusions: Our analysis has formalized essential conditions for successful early detection of serous ovarian cancer. Although the window of opportunity for early detection of these cancers lasts for several years, developing a test sufficiently sensitive and specific to take advantage of that opportunity will be a challenge. We estimated that the tumors we would need to detect to achieve even 50% sensitivity are more than 200 times smaller than the clinically apparent serous cancers typically used to evaluate performance of candidate biomarkers; none of the biomarker assays reported to date comes close to the required level of performance. Overcoming the signal-to-noise problem inherent in detection of tiny tumors will likely require discovery of truly cancer-specific biomarkers or development of novel approaches beyond traditional blood protein biomarkers. While this study was limited to ovarian cancers of serous histological type and to those arising in BRCA1 mutation carriers specifically, we believe that the results are relevant to other hereditary serous cancers and to sporadic ovarian cancers. A similar approach could be applied to other cancers to aid in defining their early natural history and to guide rational design of an early detection strategy. : Please see later in the article for Editors' Summary Background: Every year about 190,000 women develop ovarian cancer and more than 140,000 die from the disease. Ovarian cancer occurs when a cell on the surface of the ovaries (two small organs in the pelvis that produce eggs) or in the Fallopian tubes (which connect the ovaries to the womb) acquires genetic changes (mutations) that allow it to grow uncontrollably and to spread around the body (metastasize). For women whose cancer is diagnosed when it is confined to the site of origin—ovary or Fallopian tube—(stage I disease), the outlook is good; 70%–80% of these women survive for at least 5 y. However, very few ovarian cancers are diagnosed this early. Usually, by the time the cancer causes symptoms (often only vague abdominal pain and mild digestive disturbances), it has spread into the pelvis (stage II disease), into the space around the gut, stomach, and liver (stage III disease), or to distant organs (stage IV disease). Patients with advanced-stage ovarian cancer are treated with surgery and chemotherapy but, despite recent treatment improvements, only 15% of women diagnosed with stage IV disease survive for 5 y. Why Was This Study Done?: Most deaths from ovarian cancer are caused by serous ovarian cancer, a tumor subtype that is rarely diagnosed before it has spread. Early detection of serous ovarian cancer would save the lives of many women but no one knows what these cancers look like before they spread or how long they grow before they become clinically apparent. Learning about this occult (hidden) period of ovarian cancer development by observing tumors from their birth to late-stage disease is not feasible. However, some aspects of the early natural history of ovarian cancer can be studied by using data collected from healthy women who have had their ovaries and Fallopian tubes removed (prophylactic bilateral salpingo-oophorectomy [PBSO]) because they have inherited a mutated version of the BRCA1 gene that increases their ovarian cancer risk. In a few of these women, unsuspected ovarian cancer is discovered during PBSO. In this study, the researchers identify and analyze the available reports on occult serous ovarian cancer found this way and then develop mathematical models describing the early natural history of ovarian cancer. What Did the Researchers Do and Find?: The researchers first estimated the time period during which the detection of occult tumors might save lives using the data from these reports. Serous ovarian cancers, they estimated, spend more than 4 y as in situ (a very early stage of cancer development), stage I, or stage II cancers and about 1 y as stage III and IV cancers before they become clinically apparent. Next, the researchers used the data to develop mathematical models for the growth, progression, and diagnosis of serous ovarian cancer (the accuracy of which depends on the assumptions used to build the models and on the quality of the data fed into them). These models indicated that, for most of the occult period, serous cancers had a diameter of less than 1 cm (too small to be detected during surgery or by gross examination of the ovaries or Fallopian tubes) and that more than half of serous cancers had advanced to stage III/IV by the time they measured 3 cm across. Furthermore, to enable the detection of half of serous ovarian cancers before they reached stage III, an annual screening test would need to detect cancers with a diameter of 1.3 cm and to halve deaths from serous ovarian cancer, an annual screening test would need to detect 0.5-cm diameter tumors. What Do These Findings Mean?: These findings suggest that the time period over which the early detection of serous ovarian cancer would save lives is surprisingly long. More soberingly, the authors find that a test that is sensitive and specific enough to take advantage of this “window of opportunity” would need to detect tumors hundreds of times smaller than clinically apparent serous cancers. So far no ovarian cancer-specific protein or other biomarker has been identified that could be used to develop a test that comes anywhere near this level of performance. Identification of truly ovarian cancer-specific biomarkers or novel strategies will be needed in order to take advantage of the window of opportunity. The stages prior to clinical presentation of other lethal cancers are still very poorly understood. Similar studies of the early natural history of these cancers could help guide the development of rational early detection strategies. Additional Information: Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1000114.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1000114 (text/html)
https://journals.plos.org/plosmedicine/article/fil ... 00114&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pmed00:1000114
DOI: 10.1371/journal.pmed.1000114
Access Statistics for this article
More articles in PLOS Medicine from Public Library of Science
Bibliographic data for series maintained by plosmedicine ().