EconPapers    
Economics at your fingertips  
 

Characterising risk of in-hospital mortality following cardiac arrest using machine learning: A retrospective international registry study

Shane Nanayakkara, Sam Fogarty, Michael Tremeer, Kelvin Ross, Brent Richards, Christoph Bergmeir, Sheng Xu, Dion Stub, Karen Smith, Mark Tacey, Danny Liew, David Pilcher and David M Kaye

PLOS Medicine, 2018, vol. 15, issue 11, 1-16

Abstract: Background: Resuscitated cardiac arrest is associated with high mortality; however, the ability to estimate risk of adverse outcomes using existing illness severity scores is limited. Using in-hospital data available within the first 24 hours of admission, we aimed to develop more accurate models of risk prediction using both logistic regression (LR) and machine learning (ML) techniques, with a combination of demographic, physiologic, and biochemical information. Methods and findings: Patient-level data were extracted from the Australian and New Zealand Intensive Care Society (ANZICS) Adult Patient Database for patients who had experienced a cardiac arrest within 24 hours prior to admission to an intensive care unit (ICU) during the period January 2006 to December 2016. The primary outcome was in-hospital mortality. The models were trained and tested on a dataset (split 90:10) including age, lowest and highest physiologic variables during the first 24 hours, and key past medical history. LR and 5 ML approaches (gradient boosting machine [GBM], support vector classifier [SVC], random forest [RF], artificial neural network [ANN], and an ensemble) were compared to the APACHE III and Australian and New Zealand Risk of Death (ANZROD) predictions. In all, 39,566 patients from 186 ICUs were analysed. Mean (±SD) age was 61 ± 17 years; 65% were male. Overall in-hospital mortality was 45.5%. Models were evaluated in the test set. The APACHE III and ANZROD scores demonstrated good discrimination (area under the receiver operating characteristic curve [AUROC] = 0.80 [95% CI 0.79–0.82] and 0.81 [95% CI 0.8–0.82], respectively) and modest calibration (Brier score 0.19 for both), which was slightly improved by LR (AUROC = 0.82 [95% CI 0.81–0.83], DeLong test, p

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1002709 (text/html)
https://journals.plos.org/plosmedicine/article/fil ... 02709&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pmed00:1002709

DOI: 10.1371/journal.pmed.1002709

Access Statistics for this article

More articles in PLOS Medicine from Public Library of Science
Bibliographic data for series maintained by plosmedicine ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pmed00:1002709