No causal effects of serum urate levels on the risk of chronic kidney disease: A Mendelian randomization study
Daniel M Jordan,
Hyon K Choi,
Marie Verbanck,
Ruth Topless,
Hong-Hee Won,
Girish Nadkarni,
Tony R Merriman and
Ron Do
PLOS Medicine, 2019, vol. 16, issue 1, 1-15
Abstract:
Background: Studies have shown strong positive associations between serum urate (SU) levels and chronic kidney disease (CKD) risk; however, whether the relation is causal remains uncertain. We evaluate whether genetic data are consistent with a causal impact of SU level on the risk of CKD and estimated glomerular filtration rate (eGFR). Methods and findings: We used Mendelian randomization (MR) methods to evaluate the presence of a causal effect. We used aggregated genome-wide association data (N = 110,347 for SU, N = 69,374 for gout, N = 133,413 for eGFR, N = 117,165 for CKD), electronic-medical-record-linked UK Biobank data (N = 335,212), and population-based cohorts (N = 13,425), all in individuals of European ancestry, for SU levels and CKD. Our MR analysis showed that SU has a causal effect on neither eGFR level nor CKD risk across all MR analyses (all P > 0.05). These null associations contrasted with our epidemiological association findings from the 4 population-based cohorts (change in eGFR level per 1-mg/dl [59.48 μmol/l] increase in SU: −1.99 ml/min/1.73 m2; 95% CI −2.86 to −1.11; P = 8.08 × 10−6; odds ratio [OR] for CKD: 1.48; 95% CI 1.32 to 1.65; P = 1.52 × 10−11). In contrast, the same MR approaches showed that SU has a causal effect on the risk of gout (OR estimates ranging from 3.41 to 6.04 per 1-mg/dl increase in SU, all P 99% power to detect a causal effect of SU level on the risk of CKD of the same magnitude as the observed epidemiological association between SU and CKD. Limitations of this study include the lifelong effect of a genetic perturbation not being the same as an acute perturbation, the inability to study non-European populations, and some sample overlap between the datasets used in the study. Conclusions: Evidence from our series of causal inference approaches using genetics does not support a causal effect of SU level on eGFR level or CKD risk. Reducing SU levels is unlikely to reduce the risk of CKD development. Why was this study done?: What did the authors do and find?: What do these findings mean?:
Date: 2019
References: Add references at CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1002725 (text/html)
https://journals.plos.org/plosmedicine/article/fil ... 02725&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pmed00:1002725
DOI: 10.1371/journal.pmed.1002725
Access Statistics for this article
More articles in PLOS Medicine from Public Library of Science
Bibliographic data for series maintained by plosmedicine ().