Predictive vs. Empiric Assessment of Schistosomiasis: Implications for Treatment Projections in Ghana
Achille Kabore,
Nana-Kwadwo Biritwum,
Philip W Downs,
Ricardo J Soares Magalhaes,
Yaobi Zhang and
Eric A Ottesen
PLOS Neglected Tropical Diseases, 2013, vol. 7, issue 3, 1-8
Abstract:
Background: Mapping the distribution of schistosomiasis is essential to determine where control programs should operate, but because it is impractical to assess infection prevalence in every potentially endemic community, model-based geostatistics (MBG) is increasingly being used to predict prevalence and determine intervention strategies. Methodology/Principal Findings: To assess the accuracy of MBG predictions for Schistosoma haematobium infection in Ghana, school surveys were evaluated at 79 sites to yield empiric prevalence values that could be compared with values derived from recently published MBG predictions. Based on these findings schools were categorized according to WHO guidelines so that practical implications of any differences could be determined. Using the mean predicted values alone, 21 of the 25 empirically determined ‘high-risk’ schools requiring yearly praziquantel would have been undertreated and almost 20% of the remaining schools would have been treated despite empirically-determined absence of infection – translating into 28% of the children in the 79 schools being undertreated and 12% receiving treatment in the absence of any demonstrated need. Conclusions/Significance: Using the current predictive map for Ghana as a spatial decision support tool by aggregating prevalence estimates to the district level was clearly not adequate for guiding the national program, but the alternative of assessing each school in potentially endemic areas of Ghana or elsewhere is not at all feasible; modelling must be a tool complementary to empiric assessments. Thus for practical usefulness, predictive risk mapping should not be thought of as a one-time exercise but must, as in the current study, be an iterative process that incorporates empiric testing and model refining to create updated versions that meet the needs of disease control operational managers. Author Summary: The challenge of accurately mapping schistosomiasis is a daunting one – particularly because of the highly focal distribution of the disease. Ideally, of course, each specific treatment area would be assessed for infection prevalence and then treated appropriately based on guidelines of the World Health Organization. In practice, however, this is not possible, and a variety of short-cutting techniques have been developed to meet these mapping needs, including geospatial predictive mapping. This paper assesses the accuracy of model-based geostatistics (MBG) predictions for determining treatments projections in Ghana by comparing previously published data using MBG predictions with empirically derived prevalence values for schistosomiasis from school surveys completed at 79 sites. We found that using predictive mapping alone would not have provided reliable information for mass drug administration (MDA) planning – resulting in overtreatment in some areas and most importantly under-treatment in areas that needed it most. Based on our findings, predictive risk mapping cannot be a one-time exercise but must instead be a process that incorporates empiric testing and model refining to create optimised spatial decision support tools that meet the needs of disease control operational managers.
Date: 2013
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0002051 (text/html)
https://journals.plos.org/plosntds/article/file?id ... 02051&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pntd00:0002051
DOI: 10.1371/journal.pntd.0002051
Access Statistics for this article
More articles in PLOS Neglected Tropical Diseases from Public Library of Science
Bibliographic data for series maintained by plosntds ().