EconPapers    
Economics at your fingertips  
 

Comparison of Phylogeny, Venom Composition and Neutralization by Antivenom in Diverse Species of Bothrops Complex

Leijiane F Sousa, Carolina A Nicolau, Pedro S Peixoto, Juliana L Bernardoni, Sâmella S Oliveira, José Antonio Portes-Junior, Rosa Helena V Mourão, Isa Lima-dos-Santos, Ida S Sano-Martins, Hipócrates M Chalkidis, Richard H Valente and Ana M Moura-da-Silva

PLOS Neglected Tropical Diseases, 2013, vol. 7, issue 9, 1-16

Abstract: In Latin America, Bothrops snakes account for most snake bites in humans, and the recommended treatment is administration of multispecific Bothrops antivenom (SAB – soro antibotrópico). However, Bothrops snakes are very diverse with regard to their venom composition, which raises the issue of which venoms should be used as immunizing antigens for the production of pan-specific Bothrops antivenoms. In this study, we simultaneously compared the composition and reactivity with SAB of venoms collected from six species of snakes, distributed in pairs from three distinct phylogenetic clades: Bothrops, Bothropoides and Rhinocerophis. We also evaluated the neutralization of Bothrops atrox venom, which is the species responsible for most snake bites in the Amazon region, but not included in the immunization antigen mixture used to produce SAB. Using mass spectrometric and chromatographic approaches, we observed a lack of similarity in protein composition between the venoms from closely related snakes and a high similarity between the venoms of phylogenetically more distant snakes, suggesting little connection between taxonomic position and venom composition. P-III snake venom metalloproteinases (SVMPs) are the most antigenic toxins in the venoms of snakes from the Bothrops complex, whereas class P-I SVMPs, snake venom serine proteinases and phospholipases A2 reacted with antibodies in lower levels. Low molecular size toxins, such as disintegrins and bradykinin-potentiating peptides, were poorly antigenic. Toxins from the same protein family showed antigenic cross-reactivity among venoms from different species; SAB was efficient in neutralizing the B. atrox venom major toxins. Thus, we suggest that it is possible to obtain pan-specific effective antivenoms for Bothrops envenomations through immunization with venoms from only a few species of snakes, if these venoms contain protein classes that are representative of all species to which the antivenom is targeted.Author Summary: Snakebite envenomation is a serious health issue in Latin America, particularly in the Amazon, where antivenom administration may be delayed due to logistic constraints. Bothrops snakes are involved in most of the snakebite-related accidents in Brazil. This work reports a comparative study of the toxin composition and antigenicity of the Bothrops venoms used to prepare the commercial antivenom and its effectiveness against the venom from Bothrops atrox, a prevalent Amazon species that is not included in the pool. Our data show a lack of connection between Bothrops taxonomic identity and venom composition. We also show that different toxins display distinct reactivity with the tested antivenom. However, the antivenom reacted similarly with each class of toxin present in the venoms of the different snakes studied. Important evidence was the neutralization of the major toxic effects of B. atrox venom, not included in the mixture of antigens used to produce the antivenom. Based on the observed antigenicity of the distinct protein classes of toxins, we suggest that it is possible to obtain pan-specific and efficient Bothrops antivenoms via immunization with venoms from a few species of snakes that are representative of the protein composition of a large number of targeted species.

Date: 2013
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0002442 (text/html)
https://journals.plos.org/plosntds/article/file?id ... 02442&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pntd00:0002442

DOI: 10.1371/journal.pntd.0002442

Access Statistics for this article

More articles in PLOS Neglected Tropical Diseases from Public Library of Science
Bibliographic data for series maintained by plosntds ().

 
Page updated 2025-03-22
Handle: RePEc:plo:pntd00:0002442