EconPapers    
Economics at your fingertips  
 

Predicting Dengue Fever Outbreaks in French Guiana Using Climate Indicators

Antoine Adde, Pascal Roucou, Morgan Mangeas, Vanessa Ardillon, Jean-Claude Desenclos, Dominique Rousset, Romain Girod, Sébastien Briolant, Philippe Quenel and Claude Flamand

PLOS Neglected Tropical Diseases, 2016, vol. 10, issue 4, 1-16

Abstract: Background: Dengue fever epidemic dynamics are driven by complex interactions between hosts, vectors and viruses. Associations between climate and dengue have been studied around the world, but the results have shown that the impact of the climate can vary widely from one study site to another. In French Guiana, climate-based models are not available to assist in developing an early warning system. This study aims to evaluate the potential of using oceanic and atmospheric conditions to help predict dengue fever outbreaks in French Guiana. Methodology/Principal Findings: Lagged correlations and composite analyses were performed to identify the climatic conditions that characterized a typical epidemic year and to define the best indices for predicting dengue fever outbreaks during the period 1991–2013. A logistic regression was then performed to build a forecast model. We demonstrate that a model based on summer Equatorial Pacific Ocean sea surface temperatures and Azores High sea-level pressure had predictive value and was able to predict 80% of the outbreaks while incorrectly predicting only 15% of the non-epidemic years. Predictions for 2014–2015 were consistent with the observed non-epidemic conditions, and an outbreak in early 2016 was predicted. Conclusions/Significance: These findings indicate that outbreak resurgence can be modeled using a simple combination of climate indicators. This might be useful for anticipating public health actions to mitigate the effects of major outbreaks, particularly in areas where resources are limited and medical infrastructures are generally insufficient. Author Summary: Climatic determinants are amongst the most frequently cited in studies aimed at understanding and explaining the dynamics of vector-borne infections, and dengue in particular. French Guiana, a French overseas territory in which the vector Aedes aegypti is well established, experiences an epidemic cycle of dengue with large and prolonged epidemics occurring approximately every 3 years. Dengue is one of the most prioritized infectious diseases, and it requires an intense mobilization of local public health authorities, health services, and health professional and vector control services. A specific surveillance, preparedness and response plan has been developed based upon these needs. Gaining an accurate understanding of the drivers of dengue transmission is required to develop a model to predict the risk of an epidemic and to plan activities aimed at controlling it. Here, we assessed the effects of climatic factors on dengue spread to develop a predictive model of the epidemics in French Guiana on a country-wide scale. The goal of the model is to anticipate and plan both preventive and control activities. Given climate conditions, the model predicts that a dengue epidemic is likely to occur in early 2016. These conditions, which are favorable for Aedes mosquito proliferation, could also enhance the diffusion of other arboviruses, such as the Zika virus, in northeastern South America.

Date: 2016
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0004681 (text/html)
https://journals.plos.org/plosntds/article/file?id ... 04681&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pntd00:0004681

DOI: 10.1371/journal.pntd.0004681

Access Statistics for this article

More articles in PLOS Neglected Tropical Diseases from Public Library of Science
Bibliographic data for series maintained by plosntds ().

 
Page updated 2025-03-22
Handle: RePEc:plo:pntd00:0004681