Novel inference models for estimation of abundance, survivorship and recruitment in mosquito populations using mark-release-recapture data
Daniel Antunes Maciel Villela,
Gabriela de Azambuja Garcia and
Rafael Maciel- de-Freitas
PLOS Neglected Tropical Diseases, 2017, vol. 11, issue 6, 1-20
Abstract:
Background: Experiments involving mosquito mark-release-recapture (MRR) design are helpful to determine abundance, survival and even recruitment of mosquito populations in the field. Obstacles in mosquito MRR protocols include marking limitations due to small individual size, short lifespan, low efficiency in capturing devices such as traps, and individual removal upon capture. These limitations usually make MRR analysis restricted to only abundance estimation or a combination of abundance and survivorship, and often generate a great degree of uncertainty about the estimations. Methodology/Principal findings: We present a set of Bayesian biodemographic models designed to fit data from most common mosquito recapture experiments. Using both field data and simulations, we consider model features such as capture efficiency, survival rates, removal of individuals due to capturing, and collection of pupae. These models permit estimation of abundance, survivorship of both marked and unmarked mosquitoes, if different, and recruitment rate. We analyze the accuracy of estimates by varying the number of released individuals, abundance, survivorship, and capture efficiency in multiple simulations. These methods can stand capture efficiencies as low as usually reported but their accuracy depends on the number of released mosquitoes, abundance and survivorship. We also show that gathering pupal counts allows estimating differences in survivorship between released mosquitoes and the unmarked population. Conclusion/Significance: These models are important both to reduce uncertainty in evaluating MMR experiments and also to help planning future MRR studies. Author summary: Mosquito-borne diseases such as dengue and malaria impose a global burden with recurrent outbreaks. Recently, emergence of arboviral diseases caused by Zika and chikungunya viruses has also become a global concern. Knowledge about the ecology of mosquito populations under natural conditions may provide significant aid to help designing more effective vector control strategies. Quantitative metrics such as the abundance of mosquito populations are difficult to be measured in the field without resorting to experiments with markers. There are, however, limitations to these kinds of experiments such as short mosquito lifespan, marking limitations due to small body size, low efficiency in capturing devices such as traps, and once-only individual capture. Due to these limitations most methods estimate either only abundance or a combination of abundance and survivorship. In this work, we present statistical methods designed to estimate abundance, survivorship and recruitment using inference models and information such as counts of pupae. Results indicate that having low capture efficiencies as often observed in field assays still permits good estimation. Also, low number of released mosquitoes compromise density and survival estimations. We expect these methods to be helpful to people collecting mosquito field data and for health analysts to evaluate possible outcomes of control interventions.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0005682 (text/html)
https://journals.plos.org/plosntds/article/file?id ... 05682&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pntd00:0005682
DOI: 10.1371/journal.pntd.0005682
Access Statistics for this article
More articles in PLOS Neglected Tropical Diseases from Public Library of Science
Bibliographic data for series maintained by plosntds ().