Spatiotemporal variation of the association between climate dynamics and HFRS outbreaks in Eastern China during 2005-2016 and its geographic determinants
Junyu He,
George Christakos,
Jiaping Wu,
Bernard Cazelles,
Quan Qian,
Di Mu,
Yong Wang,
Wenwu Yin and
Wenyi Zhang
PLOS Neglected Tropical Diseases, 2018, vol. 12, issue 6, 1-22
Abstract:
Background: Hemorrhagic fever with renal syndrome (HFRS) is a rodent-associated zoonosis caused by hantavirus. The HFRS was initially detected in northeast China in 1931, and since 1955 it has been detected in many regions of the country. Global climate dynamics influences HFRS spread in a complex nonlinear way. The quantitative assessment of the spatiotemporal variation of the “HFRS infections-global climate dynamics” association at a large geographical scale and during a long time period is still lacking. Methods and findings: This work is the first study of a recently completed dataset of monthly HFRS cases in Eastern China during the period 2005–2016. A methodological synthesis that involves a time-frequency technique, a composite space-time model, hotspot analysis, and machine learning is implemented in the study of (a) the association between HFRS incidence spread and climate dynamics and (b) the geographic factors impacting this association over Eastern China during the period 2005–2016. The results showed that by assimilating core and city-specific knowledge bases the synthesis was able to depict quantitatively the space-time variation of periodic climate-HFRS associations at a large geographic scale and to assess numerically the strength of this association in the area and period of interest. It was found that the HFRS infections in Eastern China has a strong association with global climate dynamics, in particular, the 12, 18 and 36 mos periods were detected as the three main synchronous periods of climate dynamics and HFRS distribution. For the 36 mos period (which is the period with the strongest association), the space-time correlation pattern of the association strength indicated strong temporal but rather weak spatial dependencies. The generated space-time maps of association strength and association hotspots provided a clear picture of the geographic variation of the association strength that often-exhibited cluster characteristics (e.g., the south part of the study area displays a strong climate-HFRS association with non-point effects, whereas the middle-north part displays a weak climate-HFRS association). Another finding of this work is the upward climate-HFRS coherency trend for the past few years (2013–2015) indicating that the climate impacts on HFRS were becoming increasingly sensitive with time. Lastly, another finding of this work is that geographic factors affect the climate-HFRS association in an interrelated manner through local climate or by means of HFRS infections. In particular, location (latitude, distance to coastline and longitude), grassland and woodland are the geographic factors exerting the most noticeable effects on the climate-HFRS association (e.g., low latitude has a strong effect, whereas distance to coastline has a wave-like effect). Conclusions: The proposed synthetic quantitative approach revealed important aspects of the spatiotemporal variation of the climate-HFRS association in Eastern China during a long time period, and identified the geographic factors having a major impact on this association. Both findings could improve public health policy in an HFRS-torn country like China. Furthermore, the synthetic approach developed in this work can be used to map the space-time variation of different climate-disease associations in other parts of China and the World. Author summary: China has the largest number of HFRS infections in the world (9045 cases in 2016). Previous studies have found that HFRS infections are related to climate. However, the spatiotemporal distribution of the association between HFRS outbreaks at a large scale and global climate dynamics (i.e., over Eastern China during the period 2005–2016), as well as the identification of the geographic factors impacting this association have not been studied yet. This is then the dual focus of the present study. Strong synchronicities between global climate change and HFRS infections were detected across the entire study area that were linked to three main time periods (12, 18 and 36 mos). Specifically, strong and weak associations with non-point effects were detected in the south and middle-north parts of the study region, respectively. The climate impacts on HFRS were becoming increasingly sensitive with time. On the other hand, the geographic location (north coordinate, distance to coastline, east coordinate) makes a considerable contribution to the climate-HFRS association. As regards land-use, grassland and woodland were found to play important contributing roles to climate-HFRS association. Certain space-time links between global climate dynamics and HFRS infections were confirmed at a large spatial scale and within a long time period. The above findings could improve both the understanding of the HFRS transmission pattern and the forecasting of HFRS outbreaks.
Date: 2018
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0006554 (text/html)
https://journals.plos.org/plosntds/article/file?id ... 06554&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pntd00:0006554
DOI: 10.1371/journal.pntd.0006554
Access Statistics for this article
More articles in PLOS Neglected Tropical Diseases from Public Library of Science
Bibliographic data for series maintained by plosntds ().