EconPapers    
Economics at your fingertips  
 

Potential effects of heat waves on the population dynamics of the dengue mosquito Aedes albopictus

Pengfei Jia, Lu Liang, Xiaoyue Tan, Jin Chen and Xiang Chen

PLOS Neglected Tropical Diseases, 2019, vol. 13, issue 7, 1-16

Abstract: Extreme weather events affect the development and survival of disease pathogens and vectors. Our aim was to investigate the potential effects of heat waves on the population dynamics of Asian tiger mosquito (Aedes albopictus), which is a major vector of dengue and Zika viruses. We modeled the population abundance of blood-fed mosquito adults based on a mechanistic population model of Ae. albopictus with the consideration of diapause. Using simulated heat wave events derived from a 35-year historical dataset, we assessed how the mosquito population responded to different heat wave characteristics, including the onset day, duration, and the average temperature. Two important observations are made: (1) a heat wave event facilitates the population growth in the early development phase but tends to have an overall inhibitive effect; and (2) two primary factors affecting the development are the unusual onset time of a heat wave and a relatively high temperature over an extended period. We also performed a sensitivity analysis using different heat wave definitions, justifying the robustness of the findings. The study suggests that particular attention should be paid to future heat wave events with an abnormal onset time or a lasting high temperature in order to develop effective strategies to prevent and control Ae. albopictus-borne diseases.Author summary: Understanding the population dynamics of Asian Tiger mosquito (Ae. albopictus)–the most prevalent vector of global epidemics including West Nile virus, dengue fever, Zika–could shed lights on improving the understanding of vector transmission as well as developing effective disease control strategies. It is widely acknowledged that the life cycle of Ae. albopictus is firmly regulated by meteorological factors in a non-linear way and is sensitive to climate change. Our study extends the understanding about how extreme heat events manipulate the mosquito population abundance. We adopted an existing mechanistic population model of Ae. albopictus, combined with a rich set of simulated heat wave events derived from a 35-year historical dataset, to quantify the mosquito’s responses to different heat wave characteristics. We found that an abnormal onset time and a lasting high temperature play the most important role in affecting the mosquito population dynamics. We also performed a sensitive analysis by changing the definition of the heat wave, justifying the rigor of the conclusion. This research provides implications for developing public health intervention strategies: to control dengue fever, Zika, as well as other far-reaching mosquito-borne epidemics, priority should be given to heat wave events with an abnormal onset time or a lasting high temperature.

Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0007528 (text/html)
https://journals.plos.org/plosntds/article/file?id ... 07528&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pntd00:0007528

DOI: 10.1371/journal.pntd.0007528

Access Statistics for this article

More articles in PLOS Neglected Tropical Diseases from Public Library of Science
Bibliographic data for series maintained by plosntds ().

 
Page updated 2025-03-22
Handle: RePEc:plo:pntd00:0007528