EconPapers    
Economics at your fingertips  
 

Hydroclimatic drivers of highly seasonal leptospirosis incidence suggest prominent soil reservoir of pathogenic Leptospira spp. in rural western China

Karina Cucchi, Runyou Liu, Philip A Collender, Qu Cheng, Charles Li, Christopher M Hoover, Howard H Chang, Song Liang, Changhong Yang and Justin V Remais

PLOS Neglected Tropical Diseases, 2019, vol. 13, issue 12, 1-18

Abstract: Climate exerts complex influences on leptospirosis transmission, affecting human behavior, zoonotic host population dynamics, and survival of the pathogen in the environment. Here, we describe the spatiotemporal distribution of leptospirosis incidence reported to China’s National Infectious Disease Surveillance System from 2004–2014 in an endemic region in western China, and employ distributed lag models at annual and sub-annual scales to analyze its association with hydroclimatic risk factors and explore evidence for the potential role of a soil reservoir in the transmission of Leptospira spp. More than 97% of the 2,934 reported leptospirosis cases occurred during the harvest season between August and October, and most commonly affected farmers (83%). Using a distributed lag Poisson regression framework, we characterized incidence rate ratios (IRRs) associated with interquartile range increases in precipitation of 3.45 (95% confidence interval 2.57–4.64) over 0-1-year lags, and 1.90 (1.18–3.06) over 0-15-week lags. Adjusting for soil moisture decreased IRRs for precipitation at both timescales (yearly adjusted IRR: 1.05, 0.74–1.49; weekly adjusted IRR: 1.36, 0.72–2.57), suggesting precipitation effects may be mediated through soil moisture. Increased soil moisture was positively associated with leptospirosis at both timescales, suggesting that the survival of pathogenic Leptospira spp. in moist soils may be a critical control on harvest-associated leptospirosis transmission in the study region. These results support the hypothesis that soils may serve as an environmental reservoir and may play a significant yet underrecognized role in leptospirosis transmission.Author summary: Leptospirosis is among the leading causes of morbidity from zoonotic infections worldwide, affecting populations that are exposed to contaminated water. The disease is caused by Leptospira spp. bacteria, which are transmitted to humans either through direct contact with infected animals, or indirectly through the environment. Climatic conditions can influence transmission by altering human exposure, animal host population dynamics, and environmental conditions that allow Leptospira spp. to persist in the environment (e.g., moist environments, warm temperatures). Here, we investigated the spatiotemporal distribution of leptospirosis cases in a rural setting in western China and estimated the association between hydroclimatic conditions and leptospirosis incidence. We found that incidence of leptospirosis—especially high amongst farmers—may be associated with rice harvest, and modulated by prior bacterial accumulation within the soil under moist conditions. These results corroborate previous findings that soils may be underrecognized environmental reservoirs of pathogenic Leptospira spp., and that their role in explaining leptospirosis incidence should be considered when developing prevention programs.

Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0007968 (text/html)
https://journals.plos.org/plosntds/article/file?id ... 07968&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pntd00:0007968

DOI: 10.1371/journal.pntd.0007968

Access Statistics for this article

More articles in PLOS Neglected Tropical Diseases from Public Library of Science
Bibliographic data for series maintained by plosntds ().

 
Page updated 2025-03-22
Handle: RePEc:plo:pntd00:0007968