EconPapers    
Economics at your fingertips  
 

Genomic and transcriptional analysis of genes containing fibrinogen and IgSF domains in the schistosome vector Biomphalaria glabrata, with emphasis on the differential responses of snails susceptible or resistant to Schistosoma mansoni

Lijun Lu, Eric S Loker, Coen M Adema, Si-Ming Zhang and Lijing Bu

PLOS Neglected Tropical Diseases, 2020, vol. 14, issue 10, 1-35

Abstract: Achieving a deeper understanding of the factors controlling the defense responses of invertebrate vectors to the human-infecting pathogens they transmit will provide needed new leads to pursue for control. Consequently, we provide new genomic and transcriptomic insights regarding FReDs (containing a fibrinogen domain) and FREPs (fibrinogen domain and one or two IgSF domains) from the planorbid snail Biomphalaria glabrata, a Neotropical vector of Schistosoma mansoni, causative agent of human intestinal schistosomiasis. Using new bioinformatics approaches to improve annotation applied to both genome and RNA-Seq data, we identify 73 FReD genes, 39 of which are FREPs. We provide details of domain structure and consider relationships and homologies of B. glabrata FBG and IgSF domains. We note that schistosome-resistant (BS-90) snails mount complex FREP responses following exposure to S. mansoni infection whereas schistosome-susceptible (M line) snails do not. We also identify several coding differences between BS-90 and M line snails in three FREPs (2, 3.1 and 3.2) repeatedly implicated in other studies of anti-schistosome responses. In combination with other results, our study provides a strong impetus to pursue particular FREPs (2, 3.1, 3.2 and 4) as candidate resistance factors to be considered more broadly with respect to schistosome control efforts, including involving other Biomphalaria species vectoring S. mansoni in endemic areas in Africa.Author summary: Just as malaria parasites depend on mosquitoes for transmission, Schistosoma trematodes that infect 200+ million people in developing countries depend on freshwater snails to support their development. New control methods targeting schistosomes in the snail host are urgently needed to help break the cycle of transmission. Identification of molecules in snails that confer or facilitate resistance to successful larval development offers one way forward. Building on previous studies and new data, we used a combination of bioinformatics tools to characterize a repertoire of molecules in B. glabrata containing fibrinogen or IgSF domains, or both (the latter molecules called FREPs, first discovered in B. glabrata). We found that snails resistant to schistosomes mount vigorous, multi-component FREP responses following exposure to schistosomes whereas responses of susceptible snails are modest by comparison. Furthermore, for four FREPs repeatedly implicated in snail responses to trematodes, three (FREPs 2, 3.1 and 3.2) exist in distinctive allelic forms in susceptible and resistant snails. We propose that the search for homologous molecules needs to move to the field, to B. glabrata in the Neotropics and to other vector species of Biomphalaria in Africa, to explore the potential of FREPs as resistance factors worthy of development as control agents.

Date: 2020
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0008780 (text/html)
https://journals.plos.org/plosntds/article/file?id ... 08780&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pntd00:0008780

DOI: 10.1371/journal.pntd.0008780

Access Statistics for this article

More articles in PLOS Neglected Tropical Diseases from Public Library of Science
Bibliographic data for series maintained by plosntds ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pntd00:0008780