Enhancing fine-grained intra-urban dengue forecasting by integrating spatial interactions of human movements between urban regions
Kang Liu,
Meng Zhang,
Guikai Xi,
Aiping Deng,
Tie Song,
Qinglan Li,
Min Kang and
Ling Yin
PLOS Neglected Tropical Diseases, 2020, vol. 14, issue 12, 1-22
Abstract:
Background: As a mosquito-borne infectious disease, dengue fever (DF) has spread through tropical and subtropical regions worldwide in recent decades. Dengue forecasting is essential for enhancing the effectiveness of preventive measures. Current studies have been primarily conducted at national, sub-national, and city levels, while an intra-urban dengue forecasting at a fine spatial resolution still remains a challenging feat. As viruses spread rapidly because of a highly dynamic population flow, integrating spatial interactions of human movements between regions would be potentially beneficial for intra-urban dengue forecasting. Methodology: In this study, a new framework for enhancing intra-urban dengue forecasting was developed by integrating the spatial interactions between urban regions. First, a graph-embedding technique called Node2Vec was employed to learn the embeddings (in the form of an N-dimensional real-valued vector) of the regions from their population flow network. As strongly interacting regions would have more similar embeddings, the embeddings can serve as “interaction features.” Then, the interaction features were combined with those commonly used features (e.g., temperature, rainfall, and population) to enhance the supervised learning–based dengue forecasting models at a fine-grained intra-urban scale. Results: The performance of forecasting models (i.e., SVM, LASSO, and ANN) integrated with and without interaction features was tested and compared on township-level dengue forecasting in Guangzhou, the most threatened sub-tropical city in China. Results showed that models using both common and interaction features can achieve better performance than that using common features alone. Conclusions: The proposed approach for incorporating spatial interactions of human movements using graph-embedding technique is effective, which can help enhance fine-grained intra-urban dengue forecasting. Author summary: Dengue fever, a mosquito-borne infectious disease, has become a serious public health problem in many tropical and subtropical regions worldwide, such as Southeast Asian countries and the Guangdong Province in China. In the absence of an effective vaccine at present, disease surveillance and mosquito control remain the primary means of controlling the spread of the disease. At an intra-urban setting, it is important to predict the spatial distribution of future patients, which can help government agencies to establish precise and targeted prevention measures beforehand. Considering the fast virus spread within a city because of a highly dynamic population flow, we proposed a novel approach to enhancing fine-grained intra-urban dengue forecasting by integrating spatial interactions of human movements between urban regions. First, using a graph-embedding model called Node2Vec, the embeddings of the regions were learned from their population interaction network so that strongly interacted regions would have more similar embeddings. Secondly, serving as interaction features, the embeddings were combined with the commonly used features as inputs of the forecasting models. The experimental results indicated that the performance of the models can be improved by incorporating the interaction features, confirming the effectiveness of our proposed strategy in enhancing fine-grained intra-urban dengue forecasting.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0008924 (text/html)
https://journals.plos.org/plosntds/article/file?id ... 08924&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pntd00:0008924
DOI: 10.1371/journal.pntd.0008924
Access Statistics for this article
More articles in PLOS Neglected Tropical Diseases from Public Library of Science
Bibliographic data for series maintained by plosntds ().