Incorporating Existing Network Information into Gene Network Inference
Scott Christley,
Qing Nie and
Xiaohui Xie
PLOS ONE, 2009, vol. 4, issue 8, 1-13
Abstract:
One methodology that has met success to infer gene networks from gene expression data is based upon ordinary differential equations (ODE). However new types of data continue to be produced, so it is worthwhile to investigate how to integrate these new data types into the inference procedure. One such data is physical interactions between transcription factors and the genes they regulate as measured by ChIP-chip or ChIP-seq experiments. These interactions can be incorporated into the gene network inference procedure as a priori network information. In this article, we extend the ODE methodology into a general optimization framework that incorporates existing network information in combination with regularization parameters that encourage network sparsity. We provide theoretical results proving convergence of the estimator for our method and show the corresponding probabilistic interpretation also converges. We demonstrate our method on simulated network data and show that existing network information improves performance, overcomes the lack of observations, and performs well even when some of the existing network information is incorrect. We further apply our method to the core regulatory network of embryonic stem cells utilizing predicted interactions from two studies as existing network information. We show that including the prior network information constructs a more closely representative regulatory network versus when no information is provided.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0006799 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 06799&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0006799
DOI: 10.1371/journal.pone.0006799
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().