Identifying Prototypical Components in Behaviour Using Clustering Algorithms
Elke Braun,
Bart Geurten and
Martin Egelhaaf
PLOS ONE, 2010, vol. 5, issue 2, 1-15
Abstract:
Quantitative analysis of animal behaviour is a requirement to understand the task solving strategies of animals and the underlying control mechanisms. The identification of repeatedly occurring behavioural components is thereby a key element of a structured quantitative description. However, the complexity of most behaviours makes the identification of such behavioural components a challenging problem. We propose an automatic and objective approach for determining and evaluating prototypical behavioural components. Behavioural prototypes are identified using clustering algorithms and finally evaluated with respect to their ability to represent the whole behavioural data set. The prototypes allow for a meaningful segmentation of behavioural sequences. We applied our clustering approach to identify prototypical movements of the head of blowflies during cruising flight. The results confirm the previously established saccadic gaze strategy by the set of prototypes being divided into either predominantly translational or rotational movements, respectively. The prototypes reveal additional details about the saccadic and intersaccadic flight sections that could not be unravelled so far. Successful application of the proposed approach to behavioural data shows its ability to automatically identify prototypical behavioural components within a large and noisy database and to evaluate these with respect to their quality and stability. Hence, this approach might be applied to a broad range of behavioural and neural data obtained from different animals and in different contexts.
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0009361 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 09361&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0009361
DOI: 10.1371/journal.pone.0009361
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().