EconPapers    
Economics at your fingertips  
 

ReFlexIn: A Flexible Receptor Protein-Ligand Docking Scheme Evaluated on HIV-1 Protease

Simon Leis and Martin Zacharias

PLOS ONE, 2012, vol. 7, issue 10, 1-14

Abstract: For many targets of pharmaceutical importance conformational changes of the receptor protein are relevant during the ligand binding process. A new docking approach, ReFlexIn (Receptor Flexibility by Interpolation), that combines receptor flexibility with the computationally efficient potential grid representation of receptor molecules has been evaluated on the retroviral HIV-1 (Human Immunodeficiency Virus 1) protease system. An approximate inclusion of receptor flexibility is achieved by using interpolation between grid representations of individual receptor conformations. For the retroviral protease the method was tested on an ensemble of protease structures crystallized in the presence of different ligands and on a set of structures obtained from morphing between the unbound and a ligand-bound protease structure. Docking was performed on ligands known to bind to the protease and several non-binders. For the binders the ReFlexIn method yielded in almost all cases ligand placements in similar or closer agreement with experiment than docking to any of the ensemble members without degrading the discrimination with respect to non-binders. The improved docking performance compared to docking to rigid receptors allows for systematic virtual screening applications at very small additional computational cost.

Date: 2012
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0048008 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 48008&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0048008

DOI: 10.1371/journal.pone.0048008

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0048008