EconPapers    
Economics at your fingertips  
 

Emergent Dynamics from Spiking Neuron Networks through Symmetry Breaking of Connectivity

M Marmaduke Woodman and Viktor K Jirsa

PLOS ONE, 2013, vol. 8, issue 5, 1-12

Abstract: Low-dimensional attractive manifolds with flows prescribing the evolution of state variables are commonly used to capture the lawful behavior of behavioral and cognitive variables. Neural network dynamics underlie many of the mechanistic explanations of function and demonstrate the existence of such low-dimensional attractive manifolds. In this study, we focus on exploring the network mechanisms due to asymmetric couplings giving rise to the emergence of arbitrary flows in low dimensional spaces. Here we use a spiking neural network model, specifically the theta neuron model and simple synaptic dynamics, to show how a qualitatively identical set of basic behaviors arises from different combinations of couplings with broken symmetry, in fluctuations of both firing rate and spike timing. We further demonstrate how such network dynamics can be combined to create more complex processes. These results suggest that 1) asymmetric coupling is not always a variance to be averaged over, 2) different networks may produce the same dynamics by different dynamical routes and 3) complex dynamics may be formed by simpler dynamics through a combination of couplings.

Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0064339 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 64339&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0064339

DOI: 10.1371/journal.pone.0064339

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-29
Handle: RePEc:plo:pone00:0064339