Normalizing RNA-Sequencing Data by Modeling Hidden Covariates with Prior Knowledge
Sara Mostafavi,
Alexis Battle,
Xiaowei Zhu,
Alexander E Urban,
Douglas Levinson,
Stephen B Montgomery and
Daphne Koller
PLOS ONE, 2013, vol. 8, issue 7, 1-10
Abstract:
Transcriptomic assays that measure expression levels are widely used to study the manifestation of environmental or genetic variations in cellular processes. RNA-sequencing in particular has the potential to considerably improve such understanding because of its capacity to assay the entire transcriptome, including novel transcriptional events. However, as with earlier expression assays, analysis of RNA-sequencing data requires carefully accounting for factors that may introduce systematic, confounding variability in the expression measurements, resulting in spurious correlations. Here, we consider the problem of modeling and removing the effects of known and hidden confounding factors from RNA-sequencing data. We describe a unified residual framework that encapsulates existing approaches, and using this framework, present a novel method, HCP (Hidden Covariates with Prior). HCP uses a more informed assumption about the confounding factors, and performs as well or better than existing approaches while having a much lower computational cost. Our experiments demonstrate that accounting for known and hidden factors with appropriate models improves the quality of RNA-sequencing data in two very different tasks: detecting genetic variations that are associated with nearby expression variations (cis-eQTLs), and constructing accurate co-expression networks.
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0068141 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 68141&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0068141
DOI: 10.1371/journal.pone.0068141
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().