A Regression-Based Method for Estimating Risks and Relative Risks in Case-Base Studies
Tina Tsz-Ting Chui and
Wen-Chung Lee
PLOS ONE, 2013, vol. 8, issue 12, 1-7
Abstract:
Both the absolute risk and the relative risk (RR) have a crucial role to play in epidemiology. RR is often approximated by odds ratio (OR) under the rare-disease assumption in conventional case-control study; however, such a study design does not provide an estimate for absolute risk. The case-base study is an alternative approach which readily produces RR estimation without resorting to the rare-disease assumption. However, previous researchers only considered one single dichotomous exposure and did not elaborate how absolute risks can be estimated in a case-base study. In this paper, the authors propose a logistic model for the case-base study. The model is flexible enough to admit multiple exposures in any measurement scale—binary, categorical or continuous. It can be easily fitted using common statistical packages. With one additional step of simple calculations of the model parameters, one readily obtains relative and absolute risk estimates as well as their confidence intervals. Monte-Carlo simulations show that the proposed method can produce unbiased estimates and adequate-coverage confidence intervals, for ORs, RRs and absolute risks. The case-base study with all its desirable properties and its methods of analysis fully developed in this paper may become a mainstay in epidemiology.
Date: 2013
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0083275 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 83275&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0083275
DOI: 10.1371/journal.pone.0083275
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().