EconPapers    
Economics at your fingertips  
 

Quality Control Methods in Accelerometer Data Processing: Identifying Extreme Counts

Carly Rich, Marco Geraci, Lucy Griffiths, Francesco Sera, Carol Dezateux and Mario Cortina-Borja

PLOS ONE, 2014, vol. 9, issue 1, 1-6

Abstract: Background: Accelerometers are designed to measure plausible human activity, however extremely high count values (EHCV) have been recorded in large-scale studies. Using population data, we develop methodological principles for establishing an EHCV threshold, propose a threshold to define EHCV in the ActiGraph GT1M, determine occurrences of EHCV in a large-scale study, identify device-specific error values, and investigate the influence of varying EHCV thresholds on daily vigorous PA (VPA). Methods: We estimated quantiles to analyse the distribution of all accelerometer positive count values obtained from 9005 seven-year old children participating in the UK Millennium Cohort Study. A threshold to identify EHCV was derived by differentiating the quantile function. Data were screened for device-specific error count values and EHCV, and a sensitivity analysis conducted to compare daily VPA estimates using three approaches to accounting for EHCV. Results: Using our proposed threshold of ≥ 11,715 counts/minute to identify EHCV, we found that only 0.7% of all non-zero counts measured in MCS children were EHCV; in 99.7% of these children, EHCV comprised

Date: 2014
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0085134 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 85134&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0085134

DOI: 10.1371/journal.pone.0085134

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0085134