Constructing the Energy Landscape for Genetic Switching System Driven by Intrinsic Noise
Cheng Lv,
Xiaoguang Li,
Fangting Li and
Tiejun Li
PLOS ONE, 2014, vol. 9, issue 2, 1-10
Abstract:
Genetic switching driven by noise is a fundamental cellular process in genetic regulatory networks. Quantitatively characterizing this switching and its fluctuation properties is a key problem in computational biology. With an autoregulatory dimer model as a specific example, we design a general methodology to quantitatively understand the metastability of gene regulatory system perturbed by intrinsic noise. Based on the large deviation theory, we develop new analytical techniques to describe and calculate the optimal transition paths between the on and off states. We also construct the global quasi-potential energy landscape for the dimer model. From the obtained quasi-potential, we can extract quantitative results such as the stationary distributions of mRNA, protein and dimer, the noise strength of the expression state, and the mean switching time starting from either stable state. In the final stage, we apply this procedure to a transcriptional cascades model. Our results suggest that the quasi-potential energy landscape and the proposed methodology are general to understand the metastability in other biological systems with intrinsic noise.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088167 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 88167&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0088167
DOI: 10.1371/journal.pone.0088167
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().